Th17.1细胞与系统性红斑狼疮发病机制的研究进展
Research Progress on Th17.1 Cells and Pathogenesis of Systemic Lupus Erythematosus
DOI: 10.12677/ACM.2023.13102329, PDF, HTML, XML, 下载: 225  浏览: 329  科研立项经费支持
作者: 田 微*, 钟 威#:齐齐哈尔市第一医院风湿科,黑龙江 齐齐哈尔;宗禹萱*, 周 飞:齐齐哈尔市第一医院乳腺外科,黑龙江 齐齐哈尔
关键词: 系统性红斑狼疮自身免疫病Th17.1Systemic Lupus Erythematosus Autoimmune Diseases Th17.1
摘要: 系统性红斑狼疮(Systemic lupus erythematosus, SLE)是一种慢性、累及多系统多器官的、自身免疫性疾病,可致重要脏器损害,诊断不及时或治疗不当可危及患者生命。其病因是多种因素综合作用的结果,包括遗传、环境、雌激素、免疫耐受的破坏等导致T、B免疫细胞功能亢进、多种自身抗体生成、炎性细胞因子及免疫调节功能失衡等。而辅助性T (T helper, Th)细胞17.1是最近发现的簇分化抗原(Cluster of differentiation, CD) 4+T细胞功能亚群,探明Th17.1细胞在SLE组织器官中的分布和功能,揭示Th17.1细胞参与SLE发病及靶器官损伤的通路和机制是有必要的,以期为SLE疾病预防、病情评估以及开发精准个体化治疗靶点提供理论依据并指明新方向。
Abstract: Systemic lupus erythematosus is a chronic, multi-system and multi-organ, autoimmune disease that usually occurs in women between adolescence and menopause, and clinical manifestations are di-verse, with significant heterogeneity. SLE is a serious disease that can cause damage to important organs. Delayed diagnosis or improper treatment may endanger patients’ lives. The combined ef-fects of various factors, including the destruction of genetics, environment, estrogen and immune tolerance, lead to hyperfunction of T and B immune cells, the generation of various autoantibodies, inflammatory cytokines and the imbalance of immune regulatory function, which cause the disor-der of immune system and trigger the onset of SLE. Helper T cell 17.1 is a functional subgroup of cluster differentiation antigen 4+T cells recently discovered. The distribution and function of Th17.1 cells in SLE tissues and organs have been explored, and the pathway and mechanism of Th17.1 cells involved in SLE pathogenesis and target organ injury have been revealed, in order to provide theo-retical basis and point out new direction for SLE disease prevention, disease assessment and the development of accurate individualized therapeutic targets.
文章引用:田微, 宗禹萱, 周飞, 钟威. Th17.1细胞与系统性红斑狼疮发病机制的研究进展[J]. 临床医学进展, 2023, 13(10): 16639-16646. https://doi.org/10.12677/ACM.2023.13102329

1. 引言

系统性红斑狼疮(Systemic lupus erythematosus, SLE)是一种慢性、累及多系统多器官的自身免疫性疾病,通常好发于青春期和更年期之间的女性,临床表现多样,具有显著的异质性。SLE为重大疾病,可致重要脏器损害,诊断不及时或治疗不当可危及患者生命 [1] 。SLE病因复杂,包括遗传、环境、雌激素、免疫耐受的破坏等导致T、B免疫细胞功能亢进、多种自身抗体生成、炎性细胞因子及免疫调节功能失衡等,引起免疫系统的紊乱,引发了SLE的发病 [2] 。SLE引起的肾脏、皮肤等靶器官损伤对我国SLE患者生存和生活质量有着极重要的影响,严重的降低了我国人口健康素质,给家庭和社会经济带来了巨大负担 [3] 。在治疗方面,SLE强调个体化治疗,因为SLE的情况因个人而定,不同患者的病情程度,受累的系统和脏器不尽相同,因此需要制定个体化治疗方案 [4] 。原则上SLE,应该根据病情轻重应用激素加免疫抑制剂治疗,轻症患者可以应用中等量或小量激素加免疫抑制剂,重度活动患者可能应用足量激素加免疫抑制剂,危重患者可能应用激素冲击治疗,或者结合免疫抑制剂大剂量冲击治疗。SLE还可以应用中西医结合的办法,协同治疗。因此,研究SLE发病以及靶器官损伤的机制和进一步探索新的有效治疗手段具有重大意义。

T细胞介导的免疫应答在SLE发生发展中发挥重要的作用 [2] 。辅助性T (T helper, Th)细胞17.1是最近发现的簇分化抗原(Cluster of differentiation, CD) 4+T细胞功能亚群 [5] ,与类风湿性关节炎、炎症性肠病、多发性硬化等多种自身免疫性疾病和炎症性疾病发病有关,提示Th17.1细胞可能在SLE发生发展中扮演着重要角色。本文对Th17.1细胞在系统性红斑狼疮中的研究进展作一综述。

2. SLE与T细胞

SLE是一种自身性免疫疾病,以机体免疫耐受丧失和广泛炎症为特征。T细胞在炎症反应中起核心作用,CD4+T或CD8+T是最常见的亚群 [6] 。T细胞亚群众多,功能复杂,包括了不同种类的效应、记忆以及调节性亚群。机体内众多细胞的相互作用构成了机体的免疫系统,其中T细胞可被分为两种:促炎性以及抗炎性T细胞,根据不同T细胞所占的比例以及其信号通路功能,T细胞可引发免疫抑制、炎症反应以及抗体的产生 [6] 。T细胞亚群不同个体之间变化较大,但SLE患者却持续表现为某些T细胞亚群的比率差异以及细胞功能异常 [5] 。T细胞,尤其是CD4+T细胞,即辅助性T (T helper, Th)细胞可启动、维持以及调节自身免疫反应,其发生异常,则可引起SLE等自身免疫性疾病。Th细胞包括多个Th细胞亚群,目前已经确定了5个主要的辅助性T细胞亚群:分为Th1亚群、Th2亚群、Th17亚群、Th22亚群,调节性T细胞(T regulatory cells, Treg cells)亚群、滤泡辅助性T细胞(Follicular helper T cell, Tfh)、滤泡调节性T细胞(Follicular T regulatory cells, Tfr) [6] [7] 。之前研究结果认为Th1水平及其功能升高、而Th2细胞的降低,造成了Th1/Th2失衡,进一步引起了SLE疾病发生发展,随着深入研究发现Th1/Th2并不能全面揭示SLE的发生机制,同时Treg以及Tfr亚群比例以及功能分子降低,Tfh细胞不受控制的扩增,以及Th17、Th22亚群比例与其功能分子IL-17及IL-22水平升高,推测SLE的发病上述细胞亚群及功能的平衡失调有关 [6] [8] [9] - [13] 。因此可见,T细胞在SLE发病中起关键作用。

3. Th分化的细胞亚群

适应性免疫系统的异常激活导致无数免疫介导的炎症性疾病。通过T淋巴细胞介导反应是适应性免疫的重要协调者 [14] 。通过各种Th和细胞毒性T (cytotoxic T, Tc)细胞亚群,Th细胞驱动免疫介导的损伤。这种炎症性Th或Tc介导的组织损伤的抑制和随后的修复过程是由Treg细胞驱动的。Th亚群细胞由胸腺CD4+Naive T细胞(纯真T细胞)在不同强度抗原刺激因素、不同内细胞因子及转录信号等诱导作用下进一步分化而来,并根据分化过程中激活的转录因子、表达的不同细胞因子和归巢受体而定义 [15] 。目前研究较多的Th亚群主要是Th1、Th2、Th17、Treg、Th22、Th9和Tfh等亚群(表1)。细胞因子决定了Th亚群的分化方向,而分化的亚群细胞通过产生不同的细胞因子参与疾病进展;各亚群之间保持平衡维持了机体健康状态,失衡则将导致疾病状态。

Table 1. Differentiation of Th cell subsets

表1. Th细胞各亚群的分化

Th17的特征性是表达视黄酸孤核受体(Retinoid related orphan nuclear receptor, ROR)-C及RORγt和CD161及CCR6 [16] 。初始CD4+T细胞的分化方向是由细胞因子环境所决定的。Treg细胞特征性转录因子Foxp3直接制RORγt的表达从而抑制Th17细胞的分化 [17] 。研究显示IL-6与TGF-β、IL-21和L23可以促使初始T细胞向成熟Th17细胞分化 [18] 。而Th1与Th2相关的转录因子如Tbet、STAT1、STAT4、STAT6以及细胞因子IFN-γ、IL-4均制Th17的分化和L-17的产生,其他可以激活STAT1的细胞因子如IFN-α、IFN-β、IL-27可以制Th17细胞的分化。Th17淋巴细胞的作用已在大多数免疫介导的炎症性疾病中得到认可。经典的Th17淋巴细胞分泌IL-17A,将中性粒细胞吸引到炎症部位。这些中性粒细胞的激活导致局部组织损伤 [19] 。目前,T辅助淋巴细胞可塑性现象已得到认可。简而言之,这意味着一种类型的Th细胞可以根据它们所处的环境转变为另一种类型。例如,离体分化的Treg细胞可以在炎症环境(例如滑液中)中转化为Th17细胞(由于环境中存在IL-6) [20] 。最近,已经确定了Th17淋巴细胞的各种作用,而不仅仅是募集中性粒细胞。IL-17A在驱动肉芽肿形成中的作用现已得到认可 [21] [22] 。Th17淋巴细胞的一个子集,即Th17.1淋巴细胞,Th17.1细胞同时具有Th17细胞和Th1细胞的特征 [23] [24] 。它们产生IFN-γ和L-17A,并共表达转录因子T-bet和RORγt。IL-12在Th17.1细胞生成中起着关键作用,IL-12上调Th17细胞中的转录因子T-bet表达但下调RORγt表达并促进Th17.1的产生 [25] 。Th1样Th17细胞比Th17细胞或Th1细胞更具有活力和增值能力。现在Th17.1淋巴细胞的致病潜力越来越受到人们的认可。Th17.1淋巴细胞表达药物外排泵P-糖蛋白(P-glycoprotein, P-gp) [26] [27] 。这种P-gp在Th17.1淋巴细胞上的表达赋予它们皮质类固醇抵抗的特性。Th17.1淋巴细胞已被确定为结节病、特发性肺纤维化以及最近的大动脉炎纤维化的潜在驱动因素。因此,Th17.1淋巴细胞分泌IL-17A和IFN-γ并表达P-gp。这些特性使它们能够影响组织损伤(通过IL-17A)、肉芽肿形成(通过IFN-γ和IL-17A)和皮质类固醇耐药(通过P-gp的表达)的过程 [28] [29] [30] 。目前已证实SLE存在炎性细胞因子的升高,包括IFN-1、IL-6、IL-23。IFN-1可促进CD4+T的活化、增殖和分化。IL-6、IL-23可促进Th17细胞的功能。研究表明 [9] ,SLE患者的T细胞存在明显的代谢异常,CD4+T细胞中线粒体缺陷会导致高氧化应激、TCR信号改变和次生糖酵解增强,谷氨酰胺水解会影响Tfh细胞发育,铁的积累可增强CD4 +T向Tfh细胞分化。CD8+T细胞的细胞毒能力下降、脱粒和胞溶酶表达降低导致细胞感染率升高。

4. Th17.1细胞与自身免疫性疾病

自身免疫性疾病是机体功能紊乱,自身抗原的免疫耐受力降低,自身抗体和免疫复合物大量产生引发的以多器官受损为特征的一大类疾病,其疾病谱广泛,主要包括类风湿性关节炎、结节病等。各种自身免疫性疾病的临床表现各异,其病因及机制尚不明确。近年来,自身免疫性疾病患病率呈上升趋势,严重影响患者的劳动能力和生活质量,已成为重要的公共卫生问题。在人类炎症性疾病中,Th17.1细胞似乎比Th17更具致病性,并表达转运多药耐药蛋白,这导致对糖皮质激素不敏感。类风湿性关节炎的基本病理改变是自身免疫反应引起的慢性关节炎症,关节逐渐破坏。研究表明 [31] ,Th17和Th1在类风湿性关节炎的病变不同阶段发挥着重要作用,Th17.1在类风湿性关节炎与关节滑液量的多少关,并且与阿巴西普的不良治疗反应有关。早期的类风湿性关节炎患者外周血循环Th17.1淋巴细胞比例较低,与瓜氨酸蛋白阳性的类风湿性关节炎患者相比,抗瓜氨酸蛋白抗体阳性患者的Th17.1细胞水平升高。在结节病中,Th17.1淋巴细胞集中在纵隔淋巴结和肺泡内壁 [32] ,Th17.1淋巴细胞群的增加易导致结节病的发展。Th17.1在病理部位含量增多,即结节病的淋巴组织和支气管肺泡灌洗液中的Th17.1高于外周血 [33] 。结节病的支气管肺泡灌洗液中的Th17.1与活动性肺炎相关。进展的患者外周血中的Th17.1淋巴细胞明显增加。自身免疫性关节炎、克罗恩病以及多发性硬化症的研究发现,Th17.1可从外周血向局部迁移同时也可能在炎症部位转变生成,而在病变区域累积而发挥损伤作用 [34] [35] 。

5. Th17.1细胞与SLE

Th17细胞具有自身抗原特异性和高致病性,可导致免疫机能异常和自身免疫反应介导的靶器官损伤,与SLE致病机制密切相关。SLE的病理环境有利于Th17细胞的分化,扩增和功能发挥。Th17细胞的发育需要TGF-β和IL-6,它们可以通过特异性转录因子RORγt以及IL-17的特征性产物来鉴定,在发现Th17细胞之前,人们认为Th1和Th2细胞是建立自身免疫反应和组织损伤的主要参与者。对于SLE,这种观点随着SLE患者和SLE小鼠模型中高水平的IL-17和Th17细胞的鉴定而改变 [36] 。IL-17和Th17细胞越来越多地出现在BXD2小鼠中,表现出狼疮样自身免疫表型,并暗示其有助于生发中心的形成和随后的病原性抗体的产生 [37] 。在SLE的其他小鼠模型中,Ets基因敲除小鼠和New Zealand Black × SWR F1杂交小鼠,Th17细胞水平升高和IL-17似乎促进了SLE的炎症肾脏 [38] 。Th17淋巴细胞在活动性系统性红斑狼疮患者中增加,包括狼疮性肾炎 [39] [40] ,IL-17在狼疮血清中也增加,并且己经在狼疮肾炎患者的肾脏活淋巴组织检查中检测到浸润性IL-17分泌细胞 [41] 。在狼疮性肾炎的免疫抑制治疗诱导缓解后,Th17淋巴细胞降低 [42] 。但在免疫抑制治疗后,Th17淋巴细胞可能会在一部分狼疮性肾炎中增加。Th17淋巴细胞的这种增加可能与功能失调的Treg淋巴细胞的抑制能力减弱有关。一项研究中 [43] ,33名狼疮肾炎患者的不同T淋巴细胞亚群与19名健康对照者相比,狼疮肾炎患者的Th17.1淋巴细胞循环数量增加。此类Th17.1淋巴细胞与血清补体水平呈负相关(低补体血症与SLE中的活动性疾病相关) [44] 。抗dsDNA抗体呈阳性的SLE患者Th17.1细胞水平升高,且与C3蛋白水平呈负相关,从而提示Th17.1可能有助于抗dsDNA抗体呈阳性患者中更高的疾病活动性和更差的治疗结果。因此Th17.1在SLE中升高与疾病活动有关,推测Th17.1细胞在SLE病程的发生发展中具有重要作用。但目前关于Th17.1与SLE相关发病具体机制尚不明确。

大量的研究发现Th17细胞量的变化与SLE病活动有关,Yang [45] 等发现不论在活动期狼疮患者还是狼疮模型中,均可发现Th17细胞数量及IL-17A的表达水平增高,并发现在有血管炎的狼疮患者中,Th17细胞比例和IL-17A的表达水平显著增高,并在治疗后降低。Wen [46] 等的研究也有相似的结果,并发现新发狼疮患者外周血中Th17细胞比率与SLE的评分清中C3水平和抗dsDNA抗体的水平相关。细胞因子IL-23在维持Th17细胞致病性中发挥重要作用,有研究显示仅在TGF-β和IL-6的培养环境中,Th17细的数量虽然增加,其致病能力却明显下降,并且此时的Th17细胞同时分泌抑炎因子IL-10,IL-23则可以诱导Th17细胞产生粒细胞–巨噬细胞集落刺激因子,导致实验性自身免疫性脑脊髓炎 [47] 。在狼疮患者血清中IL-23表达水平增高,并发现在有皮损和膜炎的狼疮患者的血清中IL-23水平增高较明显,但并发现IL-23与SLE活动有关。一项研究显示 [48] ,在SLE患者,特别是伴有肾损害的患者血清中IL-23mRNA的水平明显高于健康对照,而活动期的狼疮患者血清中IL-23的mRNA水平与稳定期患者相比没有明显的差异,但IL-17/IL-23的比率明显高于稳定期患者。提示检测患者血清中TL-17/IL-23比例可能是监测患者病情是否活动的一个有用的指标。

目前发现Th17.1细胞作为一类新的、重要的T淋巴细胞参与疾病,并且Th17.1细胞已被证实在多种疾病中发挥重要作用,与自身免疫病,尤其是与系统性红斑狼疮的发病关系越来越得到重视。虽然具体病因机制尚未阐述。机制研究不够深入,今后仍需进一步研究以期为系统性红斑狼疮患者的诊断及治疗带来新的方向。Th17.1细胞的研究也将会对SLE的治疗带来一个崭新的里程碑。

基金项目

黑龙江省自然基金联合引导项目(LH2020H135)。

NOTES

*共一作者。

#通讯作者。

参考文献

[1] Basta, F., Fasola, F., Triantafyllias, K. and Schwarting, A. (2020) Systemic Lupus Erythematosus (SLE) Therapy: The Old and the New. Rheumatology and Therapy, 7, 433-446.
https://doi.org/10.1007/s40744-020-00212-9
[2] Ameer, M.A., Chaudhry, H., Mushtaq, J., et al. (2022) An Overview of Systemic Lupus Erythematosus (SLE) Pathogenesis, Classification, and Management. Cureus, 14, e30330.
https://doi.org/10.7759/cureus.30330
[3] Mohamed, A., Chen, Y., Wu, H., et al. (2019) Therapeutic Advances in the Treatment of SLE. International Immunopharmacology, 72, 218-223.
https://doi.org/10.1016/j.intimp.2019.03.010
[4] Mathian, A., Arnaud, L. and Ruiz-Irastorza, G. (2023) Is It Safe to Withdraw Low-Dose Glucocorticoids in SLE Patients in Remission? Autoimmunity Reviews, Article ID: 103446.
https://doi.org/10.1016/j.autrev.2023.103446
[5] Park, J.S. and Perl, A. (2023) Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4+ T Cells—Implications for the Pathogenesis of Systemic Lupus Erythe-matosus. International Journal of Molecular Sciences, 24, Article No. 10749.
https://doi.org/10.3390/ijms241310749
[6] Nakayamada, S. and Tanaka, Y. (2023) Immune Phenotype as a Bi-omarker for Systemic Lupus Erythematosus. Biomolecules, 13, Article No. 960.
https://doi.org/10.3390/biom13060960
[7] Tuzlak, S., Dejean, A.S., Iannacone, M., et al. (2021) Repositioning TH Cell Polarization from Single Cytokines to Complex Help. Nature Immunology, 22, 1210-1217.
https://doi.org/10.1038/s41590-021-01009-w
[8] Mohan, C., Zhang, T. and Putterman, C. (2023) Pathogenic Cellular and Molecular Mediators in Lupus Nephritis. Nature Reviews Nephrology, 19, 491-508.
https://doi.org/10.1038/s41581-023-00722-z
[9] Shan, J., Jin, H. and Xu, Y. (2020) T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Frontiers in Immunology, 11, Article 1027.
https://doi.org/10.3389/fimmu.2020.01027
[10] Petrić, M. and Radić, M. (2023) Is Th17-Targeted Therapy Effec-tive in Systemic Lupus Erythematosus? Current Issues in Molecular Biology, 45, 4331-4343.
https://doi.org/10.3390/cimb45050275
[11] Zhong, W., Feng, L., Tian, W., et al. (2023) SMURF1 Inhibits the Th17 and Th17.1 Polarization and Improves the Treg/Th17 Imbalance in Systemic Lupus Erythematosus through the Ubiquitination of RORγt. Molecular Immunology, 157, 186-194.
https://doi.org/10.1016/j.molimm.2023.03.024
[12] Jiang, Q., Yang, G., Xiao, F., et al. (2021) Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Frontiers in Immunology, 12, Article 688066.
https://doi.org/10.3389/fimmu.2021.688066
[13] Zhang, Y., Pan, Y., Zhang, P., et al. (2023) AhR Agonist Tapinarof Ameliorates Lupus Autoimmunity by Suppressing Tfh Cell Differentiation via Regulation of the JAK2-STAT3 Signaling Pathway. Immunity, Inflammation and Disease, 11, e903.
https://doi.org/10.1002/iid3.903
[14] Xipell, M., Lledó, G.M., Egan, A.C., et al. (2023) From Systemic Lupus Erythematosus to Lupus Nephritis: The Evolving Road to Targeted Therapies. Autoimmunity Reviews, 22, Article ID: 103404.
https://doi.org/10.1016/j.autrev.2023.103404
[15] Seddon, B. and Yates, A.J. (2018) The Natural History of Naive T Cells from Birth to Maturity. Immunological Reviews, 285, 218-232.
https://doi.org/10.1111/imr.12694
[16] Park, H., Li, Z., Yang, X.O., et al. (2005) A Distinct Lineage of CD4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. Nature Immunology, 6, 1133-1141.
https://doi.org/10.1038/ni1261
[17] Zhou, L., Lopes, J.E., Chong, M.M.W., et al. (2008) TGF-β-Induced Foxp3 Inhibits TH17 Cell Differentiation by Antagonizing RORγt Function. Nature, 453, 236-240.
https://doi.org/10.1038/nature06878
[18] Korn, T. and Hiltensperger, M. (2021) Role of IL-6 in the Commitment of T Cell Subsets. Cytokine, 146, Article ID: 155654.
https://doi.org/10.1016/j.cyto.2021.155654
[19] Brockmann, L., Giannou, A.D., Gagliani, N. and Huber, S. (2017) Regulation of TH17 Cells and Associated Cytokines in Wound Heal-ing, Tissue Regeneration, and Carcinogenesis. International Journal of Molecular Sciences, 18, Article No. 1033.
https://doi.org/10.3390/ijms18051033
[20] Tristão, F.S.M., Rocha, F.A., Carlos, D., et al. (2017) Th17-Inducing Cytokines IL-6 and IL-23 Are Crucial for Granuloma Formation during Experimental Paracoccidioidomycosis. Frontiers in Immunology, 8, Article 949.
https://doi.org/10.3389/fimmu.2017.00949
[21] Shen, H. and Chen, Z.W. (2018) The Crucial Roles of Th17-Related Cytokines/Signal Pathways in M. tuberculosis Infection. Cellular & Molecular Immunology, 15, 216-225.
https://doi.org/10.1038/cmi.2017.128
[22] Bordon, Y. (2014) T Cells: Spotting the Troublemakers. Nature Reviews Immunology, 14, 64-65.
https://doi.org/10.1038/nri3610
[23] Ramesh, R., Kozhaya, L., McKevitt, K., et al. (2014) Pro-Inflammatory Hu-man Th17 Cells Selectively Express P-Glycoprotein and Are Refractory to Glucocorticoids. Journal of Experimental Medicine, 211, 89-104.
https://doi.org/10.1084/jem.20130301
[24] Acosta-Rodriguez, E., Rivino, L., Geginat, J., et al. (2007) Surface Phenotype and Antigenic Specificity of Human Interleukin 17-Producing T Helper Memory Cells. Nature Immunology, 8, 639-646.
https://doi.org/10.1038/ni1467
[25] Larosa, M., Zen, M., Gatto, M., et al. (2019) IL-12 and IL-23/Th17 Axis in Systemic Lupus Erythematosus. Experimental Biology and Medicine, 244, 42-51.
https://doi.org/10.1177/1535370218824547
[26] Celada, L.J., Kropski, J.A., Herazo-Maya, J.D., et al. (2018) PD-1 Up-Regulation on CD4+ T Cells Promotes Pulmonary Fibrosis through STAT3-Mediated IL-17A and TGF-β1 Production. Science Translational Medicine, 10.
https://doi.org/10.1126/scitranslmed.aar8356
[27] Singh, K., Rathore, U., Rai, M.K., et al. (2022) Novel Th17 Lymphocyte Populations, Th17.1 and PD1+Th17, Are Increased in Takayasu Arteritis, and Both Th17 and Th17.1 Sub-Populations Associate with Active Disease. Journal of Inflammation Research, 15, 1521-1541.
https://doi.org/10.2147/JIR.S355881
[28] Benham, H., Norris, P., Goodall, J., et al. (2013) Th17 and Th22 Cells in Psoriatic Arthritis and Psoriasis. Arthritis Research & Therapy, 15, Article No. R136.
https://doi.org/10.1186/ar4317
[29] Ruiz de Morales, J., Puig, L., Daudén, E., et al. (2020) Critical Role of Inter-leukin (Il)-17 in Inflammatory and Immune Disorders: An Updated Review of the Evidence Focusing in Controversies. Autoimmunity Reviews, 19, Article ID: 102429.
https://doi.org/10.1016/j.autrev.2019.102429
[30] Taams, L.S. (2020) Interleukin-17 in Rheumatoid Arthritis: Trials and Tribulations. Journal of Experimental Medicine, 217, e20192048.
https://doi.org/10.1084/jem.20192048
[31] Edavalath, S., Rai, M.K., Gupta, V., et al. (2022) Tacroli-mus Induces Remission in Refractory and Relapsing Lupus Nephritis by Decreasing P-Glycoprotein Expression and Function on Peripheral Blood Lymphocytes. Rheumatology International, 42, 1347-1354.
https://doi.org/10.1007/s00296-021-05057-1
[32] Arger, N.K., Machiraju, S., Allen, I.E., Woodruff, P.G. and Koth, L.L. (2020) T-Bet Expression in Peripheral Th17.0 Cells Is Associated with Pulmonary Function Changes in Sar-coidosis. Frontiers in Immunology, 11, Article 1129.
https://doi.org/10.3389/fimmu.2020.01129
[33] Lepzien, R., Nie, M., Czarnewski, P., et al. (2022) Pulmonary and Blood Dendritic Cells from Sarcoidosis Patients More Potently Induce IFNγ-Producing Th1 Cells Compared with Mon-ocytes. Journal of Leukocyte Biology, 111, 857-866.
https://doi.org/10.1002/JLB.5A0321-162R
[34] van Lange-laar, J., van der Vuurst de Vries, R.M., Janssen, M., et al. (2018) T Helper 17.1 Cells Associate with Multiple Sclerosis Disease Activity: Perspectives for Early Intervention. Brain, 141, 1334-1349.
https://doi.org/10.1093/brain/awy069
[35] Basdeo, S.A., Cluxton, D., Sulaimani, J., et al. (2017) Ex-Th17 (Non-classical Th1) Cells Are Functionally Distinct from Classical Th1 and Th17 Cells and Are Not Constrained by Regulatory T Cells. Journal of Immunology, 198, 2249-2259.
https://doi.org/10.4049/jimmunol.1600737
[36] Rother, N. and van der Vlag, J. (2015) Disturbed T Cell Signaling and Altered Th17 and Regulatory T Cell Subsets in the Pathogenesis of Systemic Lupus Erythematosus. Frontiers in Immunology, 6, Article 610.
https://doi.org/10.3389/fimmu.2015.00610
[37] Hsu, H.-C., Yang, P., Wang, J., et al. (2008) Interleukin 17-Producing T Helper Cells and Interleukin 17 Orchestrate Autoreactive Germinal Center Development in Autoimmune BXD2 Mice. Nature Immunology, 9, 166-175.
https://doi.org/10.1038/ni1552
[38] Wong, M., La Cava, A., Singh, R.P. and Hahn, B.H. (2010) Blockade of Pro-grammed Death-1 in Young (New Zealand Black × New Zealand White) F1 Mice Promotes the Activity of Suppressive CD8+ T Cells That Protect from Lupus-Like Disease. Journal of Immunology, 185, 6563-6571.
https://doi.org/10.4049/jimmunol.0903401
[39] Koga, T., Ichinose, K., Kawakami, A. and Tsokos, G.C. (2019) The Role of IL-17 in Systemic Lupus Erythematosus and Its Potential as a Therapeutic Target. Expert Review of Clinical Immunology, 15, 629-637.
https://doi.org/10.1080/1744666X.2019.1593141
[40] Zhong, W., Jiang, Y., Ma, H., et al. (2017) Elevated Levels of CCR6+ T Helper 22 Cells Correlate with Skin and Renal Impairment in Systemic Lupus Erythematosus. Scientific Re-ports, 7, Article No. 12962.
https://doi.org/10.1038/s41598-017-13344-w
[41] Zickert, A., Amoudruz, P., Sundström, Y., et al. (2015) IL-17 and IL-23 in Lupus Nephritis—Association to Histopathology and Response to Treatment. BMC Immunology, 16, Arti-cle No. 7.
https://doi.org/10.1186/s12865-015-0070-7
[42] Shenoy, S., Chaurasia, S., Edavalath, S., et al. (2018) Effect of Induction Therapy on Circulating T-Helper 17 and T-Regulatory Cells in Active Proliferative Lupus Nephritis. International Journal of Rheumatic Diseases, 21, 1040-1048.
https://doi.org/10.1111/1756-185X.13272
[43] Jakiela, B., Kosałka, J., Plutecka, H., et al. (2018) Facilitated Ex-pansion of Th17 Cells in Lupus Nephritis Patients. Clinical and Experimental Immunology, 194, 283-294.
https://doi.org/10.1111/cei.13196
[44] Zhong, W., Jiang, Z., Wu, J., et al. (2018) CCR6+ Th Cell Distribution Dif-ferentiates Systemic Lupus Erythematosus Patients Based on Anti-dsDNA Antibody Status. PeerJ, 6, e4294.
https://doi.org/10.7717/peerj.4294
[45] Yang, J., Chu, Y., Yang, X., et al. (2009) Th17 and Natural Treg Cell Pop-ulation Dynamics in Systemic Lupus Erythematosus. Arthritis & Rheumatology, 60, 1472-1483.
https://doi.org/10.1002/art.24499
[46] Wen, Z., Xu, L., Xu, W. and Xiong, S. (2014) Detection of Dynamic Fre-quencies of Th17 Cells and Their Associations with Clinical Parameters in Patients with Systemic Lupus Erythematosus Receiving Standard Therapy. Clinical Rheumatology, 33, 1451-1458.
https://doi.org/10.1007/s10067-014-2656-5
[47] El-Behi, M., Ciric, B., Dai, H., et al. (2011) The Encephalitogen-icity of TH17 Cells Is Dependent on IL-1- and IL-23-Induced Production of the Cytokine GM-CSF. Nature Immunology, 12, 568-575.
https://doi.org/10.1038/ni.2031
[48] Du, J., Li, Z., Shi, J. and Bi, L. (2014) Associations between Serum Interleukin-23 Levels and Clinical Characteristics in Patients with Systemic Lupus Erythematosus. Journal of In-ternational Medical Research, 42, 1123-1130.
https://doi.org/10.1177/0300060513509130