多层结构下非线性方程组的粘性消失极限
The Viscosity Vanishing Limit of Systems of Nonlinear Equations underMultiple Structures
DOI: 10.12677/AAM.2023.1210434, PDF, 下载: 163  浏览: 2,713 
作者: 童林曦, 肖 慧, 戴冰清, 李 昂:上海师范大学数理学院,上海
关键词: 粘性激波层匹配渐近展开能量估计Viscous Shock Layer Matched Asymptotic Expansion Energy Estimates
摘要: 本文研究多层结构下一维非线性粘性方程组的粘性消失极限问题,证明当两个不相互作用的激波满足摘条件时,粘性方程组的解与无粘方程组的解之间具有渐近等价性。 该问题的证明使用了与粘性激波剖面稳定性理论相关的匹配渐近分析和能量估计。 我们首先通过多尺度的匹配渐近展开方法构造粘性方程组的近似解,再通过能量估计的方法进行稳定性分析从而得出最终结论。
Abstract: In this thesis, we study the vanishing viscous limit of one-dimensional nonlinear viscous system with multi-layer structure. It is proved that when two non-interacting shock waves satisfy the entropy condition for the inviscid system, the asymptotic equivalence can be achieved between the solution of the viscous system and the solution of the inviscid system. This is proved based on matched asymptotic analysis and energy estimate related to the stability theory of viscous shock profile. First, the approximate solution of the viscosity system is constructed by the multi-scale matched asymptotic expansion method, and then the final conclusion is obtained by the stability analysis with the method of energy estimate.
文章引用:童林曦, 肖慧, 戴冰清, 李昂. 多层结构下非线性方程组的粘性消失极限[J]. 应用数学进展, 2023, 12(10): 4415-4436. https://doi.org/10.12677/AAM.2023.1210434

参考文献

[1] Hoff, D. and Liu, T.P. (1989) The Inviscid Limit for the Navier-Stokes Equations of Compress- ible Isentropic Flow with Shock Data. Indiana University Mathematics Journal, 36, 861-915.
[2] Goodman, J. and Xin, Z.P. (1992) Viscous Limits for Piecewise Smooth Solutions to Systems of Conservation Laws. Archive for Rational Mechanics and Analysis, 121, 235-265.
https://doi.org/10.1007/BF00410614
[3] Maslov, A.A. and Mironov, S.G. (1999) Viscous Shock Layer on a Plate in Hypersonic Flow. European Journal of Mechanics, 18, 213-226.
https://doi.org/10.1016/S0997-7546(99)80023-5
[4] Huang, F.M. and Wang, Y. (2010) Hydrodynamic Limit of the Boltzmann Equation with
[5] Contact Discontinuities. Communications in Mathematical Physics, 295, 293-326.
https://doi.org/10.1007/s00220-009-0966-2
[6] Eyink, G.L. and Drivas, T.D. (2015) Spontaneous Stochasticity and Anomalous Dissipation for Burgers Equation. Journal of Statistical Physics, 158, 386-432.
https://doi.org/10.1007/s10955-014-1135-3
[7] Wang, J. (2010) Boundary Layers for Compressible Navier-Stokes Equations with Outflow Boundary Condition. Journal of Differential Equations, 248, 1143-1174.
https://doi.org/10.1016/j.jde.2009.12.001
[8] Yu, S.H. (1999) Zero-Dissipation Limit of Solutions with Shocks for Systems of Hyperbolic Conservation Laws. Archive for Rational Mechanics and Analysis, 146, 275-370.
https://doi.org/10.1007/s002050050143
[9] Ma, S.X. (2009) Viscous Limits to Piecewise Smooth Solutions for the Navier-Stokes Equations of One-Dimensional Compressible Viscous Heat-Conducting Fluids. Methods and Applications of Analysis, 16, 1-32.
https://doi.org/10.4310/MAA.2009.v16.n1.a1
[10] Zheng, T.T. and Zhao, J.N. (2012) On the Stability of Contact Discontinuity for Cauchy Prob- lem of Compress Navier-Stokes Equations with General Initial Data. Science China Mathe- matics, 55, 2005-2026.
https://doi.org/10.1007/s11425-012-4441-8
[11] Ou, Y.B. (2013) The Vanishing Viscosity Method for the Sensitivity Analysis of an Optimal Control Problem of Conservation Laws in the Presence of Shocks. Nonlinear Analysis Real World Applications, 14, 1947-1974.
https://doi.org/10.1016/j.nonrwa.2013.02.001
[12] Xin, Z.P. (1993) Zero Dissipation Limit to Rarefaction Waves for the One-Dimensional Navier- Stokes Equations of Compressible Isentropic Gases. Communications on Pure and Applied Mathematics, 46, 621-665.
https://doi.org/10.1002/cpa.3160460502
[13] Wang, Y. (2008) Zero Dissipation Limit of the Compressible Heat-Conducting Navier-Stokes Equations in the Presence of the Shock. Acta Mathematica Scientia, 28, 727-748.
https://doi.org/10.1016/S0252-9602(08)60074-0
[14] Wang, H.Y. (2005) Zero Dissipation Limit to Rarefaction Waves for the p-System. Acta Math- ematica Sinica, English Series, 21, 1229-1210.
https://doi.org/10.1007/s10114-004-0515-z
[15] Huang, F.M. and Li, J. (2010) Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for One-Dimensional Compressible Navier-Stokes System. Archive for Rational Mechanics and Analysis, 197, 89-116.
https://doi.org/10.1007/s00205-009-0267-0
[16] Huang, F.M., Li, M.G. and Wang, Y. (2012) Zero Dissipation Limit to Rarefaction Wave with Vacuum for One-Dimensional Compressible Navier-Stokes Equations. SIAM Journal on Mathematical Analysis, 44, 1742-1759.
https://doi.org/10.1137/100814305
[17] Huang, F.M. and Wang, Y. (2013) The Limit of the Boltzmann Equation to the Euler Equa- tions for Riemann Problems. SIAM Journal on Mathematical Analysis, 45, 1741-1811.
https://doi.org/10.1137/120898541
[18] Huang, F.M. and Wang, Y. (2012) Vanishing Viscosity Limit of Compressible Navier-Stokes Equations for Solutions to a Riemann Problem. Archive for Rational Mechanics and Analysis, 203, 379-413.
https://doi.org/10.1007/s00205-011-0450-y
[19] Huang, F.M. and Wang, Y. (2015) Vanishing Viscosity of Isentropic Navier-Stokes Equations for Interacting Shocks. Science China Mathematics, 58, 653-672.
https://doi.org/10.1007/s11425-014-4962-4
[20] Li, H.L. (2018) Stability of the Superposition of a Viscous Contact Wave with Two Rarefac- tion Waves to the Bipolar Vlasov-Poisson-Boltzmann System. SIAM Journal on Mathematical Analysis, 50.
https://doi.org/10.1137/17M1150888
[21] Ma, S.X. (2010) Zero Dissipation Limit to Strong Contact Discontinuity for the 1-D Com- pressible Navier-Stokes Equations. Journal of Differential Equations, 248, 95-110.
https://doi.org/10.1016/j.jde.2009.08.016
[22] Liu, T.P. and Xin, Z.P. (1992) Stability of Viscous Shock Waves Associated with a System of Nonstrictly Hyperbolic Conservations Laws. Communication on Pure and Applied Mathemat- ics, 45, 361-388.
https://doi.org/10.1002/cpa.3160450402
[23] Zhang, Y.H. (2013) Zero Dissipation Limit to a Riemann Solution Consisting of Two Shock Waves for the 1D Compressible Isentropic Navier-Stokes Equations. Science China, 56, 2205- 2232.
https://doi.org/10.1007/s11425-013-4690-1
[24] Zeng, H. (2009) Stability of a Superposition of Shock Waves with Contact Discontinuities for Systems of Viscous Conservation Laws. Journal of Differential Equations, 246, 2081-2102.
https://doi.org/10.1016/j.jde.2008.07.034
[25] Hong, H. and Wang, T. (2017) Zero Dissipion Limit to a Riemann Solution for the Compressinle Navier-Stokes System of General Gas. Acta Mathematica Scientia, 37, 1177-1208.
https://doi.org/10.1016/S0252-9602(17)30067-X
[26] Serre, D. (1998) Global Solutions (−∞ < t < +∞) of Parabolic Systems of Conservation Laws. Annales de l’institut Fourier (Grenoble), 48, 1069-1091.
https://doi.org/10.5802/aif.1649
[27] Shi, X.D. (2016) Vanishing Viscosity for Non-Isentropic Gas Dynamics with Interacting Shocks. Acta Mathematica Scientia, 36, 1699-1720.
https://doi.org/10.1016/S0252-9602(16)30100-X
[28] Grenier, E. and Gues, O. (1998) Boundary Layers for Viscous Perturbations of Noncharacter- istic Quasilinear Hyperbolic Problems. Journal of Differential Equations, 143, 110-146.
https://doi.org/10.1006/jdeq.1997.3364
[29] Wang, J. (2009) Boundary Layers for Parabolic Perturbations of Quasi-Linear Hyperbolic Problems. Mathematical Methods in the Applied Sciences, 32, 2416-2438.
https://doi.org/10.1002/mma.1144
[30] Li, T.T. and Yu, W.C. (1985) Boundary Value Problems for Quasilinear Hyperbolic System-s. Duke University Mathematics Series, Vol. V. Duke University, Mathematics Department, Durham, NC.