BiCR算法求解Sylvester矩阵方程组的Perhermitian解
The BiCR Algorithm for Solving the Perhermitian Solutions of Sylvester Matrix Equations
摘要: 对于给定的矩阵X∈Cn×n,如果SXS=SH,其中S是给定的反射矩阵,即SH=S,S2=I,则称矩阵X为perhermitian矩阵。本文提出一种用于求解Sylvester矩阵方程组的perhermitian解的双共轭残差(BiCR)算法,并且证明了该算法的收敛性。通过选择任意初始perhermitian矩阵,可以在有限步求解出Sylvester矩阵方程组的唯一最小范数perhermitian解。最后,我们给出了一些数值算例来验证该算法的有效性和可行性。
Abstract: For a given matrix X∈Cn×n , matrix X is said to be perhermitian if SXS=SH , where S is a given re-flection matrix, i.e., SH=S , S2=I . In this paper, we propose the Bi-Conjugate Residual (BiCR) algorithm for solving the perhermitian solutions of Sylvester matrix equations and prove the con-vergence of the algorithm. By choosing any initial perhermitian matrices, the unique mini-mum-norm perhermitian solutions of the Sylvester matrix equations can be solved in finite steps. Finally, we give some numerical examples to verify the validity and feasibility of the algorithm.
文章引用:唐孝伟, 李胜坤. BiCR算法求解Sylvester矩阵方程组的Perhermitian解[J]. 应用数学进展, 2023, 12(12): 4967-4986. https://doi.org/10.12677/AAM.2023.1212489

1. 引言

矩阵方程在控制理论 [1] 、系统理论 [2] 和应用数学 [3] 等许多领域都有重要的作用,比如Sylvester矩阵方程可以用来恢复缺失或者损坏的信号或图像 [4] ,也可以用来研究线性时不变系统的稳定性 [5] 。另外,五点差分格式求解椭圆方程时会遇到Sylvester矩阵方程 [6] ,在常微分方程定性理论研究及数值求解的隐式Runge-Kwutta方法与块方法也会涉及到Sylvester矩阵方程 [6] 。对于它的一般解,基于Arnoldi过程,Hu等人 [7] 给出了求解 A X X B = C 的Galerkin算法和最小残差法(MINRES);基于块Arnoldi过程,El Guennouni A等人 [8] 给出了求解 A X X B = C 的块GMRES方法(BGMRES);为了提高收敛速度和缩短运算时间,基于全局Arnoldi过程,Fatemeh Panjeh Ali Beika等人 [9] 提出了求解Sylvester矩阵方程组的全局完全正交化方法(Gl-FOM)和全局极小残量法(Gl-GMRES)。由于Krylov子空间方法的收敛速度依赖于方程系数矩阵谱的性质,选取合适的预条件矩阵,往往可以提高收敛速度,为了进一步提高算法的收敛速度,Bouhamidi A等人 [10] 给出了预条件块Arnoldi方法求解Sylvester矩阵方程,Kaabi [11] 等人提出了预条件Galerkin算法(PGal)和预条件最小残差法(PMR)求解Sylvester矩阵方程。基于预条件全局Arnoldi过程,徐冬梅等人 [12] 给出了求解Sylvester矩阵方程组的预条件全局正交化方法(PG-FOM)和预条件全局极小残量法(PG-GMRES)。对于约束解,Dehghan和Hajarian [13] [14] 提出了求解广义Sylvester矩阵方程组的自反解和广义双对称解的CGNE方法。Dehghan和Hajarian [15] [16] 也通过推广CGNE方法得到了一般矩阵方程组的解和广义双对称解。但是,一般情况下,CGNE方法收敛速度较慢。最近,吕长青等人 [17] 和Masoud Hajarian [18] 提出了利用BiCR算法求解广义Sylvester矩阵方程组的中心对称解和反中心对称解,证明了这种BiCR算法可以在有限步内找到广义Sylvester矩阵方程组的中心对称解,并且选取特定的初始矩阵,可以得到最小范数解;闫同新等人 [19] 提出了利用BiCR算法求解广义Sylvester矩阵方程组的自反解和反自反解以及最小Frobenius范数对称解;Masoud Hajarian [18] 提出了利用BiCR算法求解广义Sylvester矩阵方程组的对称解,收敛性分析表明,BiCR算法在不存在舍入误差的情况下,可以在有限次迭代内计算出广义Sylvester矩阵方程组的最小Frobenius范数对称解对。然而,Sylvester矩阵方程组的perhermitian解目前还没有被研究过。因此,本文将给出求解Sylvester矩阵方程组的perhermitian解的BiCR算法。

在本文中,考虑如下Sylvester矩阵方程组

j = 1 q A i j X j B i j = C i , i = 1 , 2 , , p , (1.1)

其中,已知系数矩阵 A i j m × n , B i j n × l 和常数矩阵 C i m × l X j n × n 是未知矩阵。

2. 预备知识

定义2.1 [20] [21] 对给定的反射矩阵 S n × n ,即 S H = S S 2 = I n 。如果矩阵 X n × n 满足条件 S X S = S H ( S X S = S H ),那么称其为反射矩阵S的perhermitian矩阵(skew-perhermitian矩阵),记为 X n × n ( X S n × n )。

定义2.2 [22] [23] 设任意 X , Y m × n ,规定

X , Y = Re [ t r ( X H Y ) ] ,

则称 X , Y 为矩阵 X , Y 的实内积,记作 ( m × n , , , )

定义2.3 [22] [23] 设矩阵 X n × n ,规定

X = X , X = Re [ t r ( X H X ) ] ,

则称 X 为矩阵X的Frobenius范数,简称F范数。

定义2.4 [22] [23] 设矩阵 X , Y n × n ,如果 X , Y = 0 ,那么矩阵 X , Y 是正交的。

引理2.1 设矩阵 X , Y M n ( ) ,有

Re [ t r ( X Y ) ] = Re [ t r ( X Y ¯ ) ] = Re [ t r ( Y X ) ] = Re [ t r ( X T Y T ) ] = Re [ t r ( X H Y H ) ] .

引理2.2 设矩阵 X n × n , Y S n × n ,则矩阵 X , Y 是正交的。

证明:因为

X , Y = Re [ t r ( X H Y ) ] = Re [ t r ( S X S S Y H S ) ] = Re [ t r ( X Y H ) ] = Re [ t r ( X Y H ) H ] = Re [ t r ( Y X H ) ] = Re [ t r ( X H Y ) ] = X , Y ,

所以 X , Y = 0 ,因此矩阵 X , Y 正交。 □

引理2.3 设矩阵 X n × n ,那么 X + S X H S n × n

证明:因为

S ( X + S X H S ) S = S X S + X H = ( X + S X H S ) H ,

所以结论成立。 □

根据引理2.3,我们可以很容易地构造一个perhermitian矩阵。

引理2.4 设矩阵 X n × n Y n × n S n × n 为反射矩阵,有

1 2 Re ( t r ( X H ( Y + S Y H S ) ) ) = Re ( t r ( X H Y ) ) .

证明:

1 2 Re ( t r ( X H ( Y + S Y H S ) ) ) = 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( X H S Y H S ) ) ) = 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( S X H S Y H ) ) ) = 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( X Y H ) ) ) = 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( Y X H ) H ) )

= 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( Y X H ) ) ) = 1 2 ( Re ( t r ( X H Y ) ) + Re ( t r ( X H Y ) ) ) = Re ( t r ( X H Y ) ) .

证毕。 □

引理2.5 如果矩阵 X , Y n × n α , β ,那么 α X + β Y n × n ,换句话说, n × n n × n 的一个子空间。

证明:因为

S ( α X + β Y ) S = α S X S + β S Y S = α X H + β Y H = ( α X + β Y ) H .

证毕。 □

3. 迭代方法

在这个部分,我们提出一种用于求解Sylvester矩阵方程组的perhermitian解的BiCR算法。

3.1. BiCR算法求解Sylvester矩阵方程组的Perhermitian解(表1)

首先,给出该算法的迭代过程。

通过算法3.1,我们可以知道 X j ( k ) , W j ( k ) , U j ( k ) U ˜ j ( k ) 都是反射矩阵S的perhermitian矩阵, X j ( k ) n × n W j ( k ) n × n U j ( k ) n × n U ˜ j ( k ) n × n ,其中 j = 1 , 2 , , q

3.2. 收敛性分析

接下来,对该算法进行收敛性分析。我们可以通过以下定理来证明所提算法的收敛性。

定理3.1 如果对于正整数m, R i ( k ) 0 T i ( k ) 0 k = 1 , 2 , , m ,那么

i = 1 p Re ( t r ( R i H ( t ) T i ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s < t (3.1)

j = 1 q Re ( t r ( W j H ( t ) W j ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s t (3.2)

i = 1 p Re ( t r ( T i H ( t ) T i ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s t (3.3)

证明:我们采用数学归纳法来证明这个定理,可以得到上述(3.1)~(3.3)。

首先,当 s < n < m ,我们假设有

i = 1 p Re ( t r ( R i H ( n ) T i ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s < t

j = 1 q Re ( t r ( W j H ( n ) W j ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s t

i = 1 p Re ( t r ( T i H ( n ) T i ( s ) ) ) = 0 , s , t = 1 , 2 , , m , s t

根据上述归纳假设,接下来我们来证明 n + 1 时(3.1)~(3.3)的情况,可得

i = 1 p Re ( t r ( R i H ( n + 1 ) T i ( s ) ) ) = i = 1 p Re ( t r ( ( R i ( n ) α ( n ) T i ( n ) ) H T i ( s ) ) ) = i = 1 p Re ( t r ( R i H ( n ) T i ( s ) ) ) α ( n ) i = 1 p Re ( t r ( T i H ( n ) T i ( s ) ) ) = 0

j = 1 q Re ( t r ( W j H ( n + 1 ) W j ( s ) ) ) = j = 1 q Re ( t r ( 1 2 i = 1 p ( A i j H V ˜ i ( n + 1 ) B i j H + S ( A i j H V ˜ i ( n + 1 ) B i j H ) H S ) H W j ( s ) ) ) = 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( 1 2 i = 1 p ( A i j H V i ( n + 1 ) B i j H + S ( A i j H V i ( n + 1 ) B i j H ) H S ) H W j ( s ) ) )

= 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( 1 2 ( i = 1 p B i j ( T i ( n ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) V ˜ i ( n ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) V ˜ i ( n 1 ) ) H A i j + S ( A i j H ( T i ( n ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) V ˜ i ( n ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) V ˜ i ( n 1 ) ) B i j H ) S ) W j ( s ) ) )

= 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( 1 2 i = 1 p ( B i j T i H ( n ) A i j + S A i j H T i ( n ) B i j H S ) W j ( s ) i = 1 p t r ( T i H ( n ) M i ( n ) ) τ ( n ) W j H ( n ) W j ( s ) j = 1 q t r ( W j H ( n 1 ) N j ( n ) ) τ ( n 1 ) W j H ( n 1 ) W j ( s ) ) ) = 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( 1 2 i = 1 p ( T i H ( n ) A i j W j ( s ) B i j + T i ( n ) ( A i j W j ( s ) B i j ) H ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) W j H ( n ) W j ( s ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) W j H ( n 1 ) W j ( s ) ) ) = 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( i = 1 p T i H ( n ) A i j W j ( s ) B i j i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) W j H ( n ) W j ( s ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) W j H ( n 1 ) W j ( s ) ) )

= 1 i = 1 p V i ( n + 1 ) ( j = 1 q Re ( t r ( i = 1 p T i H ( n ) A i j ( U j ( s + 1 ) + i = 1 p Re ( t r ( T i H ( n ) M i ( s ) ) ) σ ( s ) U ˜ j ( s ) + i = 1 p Re ( t r ( T i H ( s 1 ) M i ( s ) ) ) σ ( s 1 ) U ˜ j ( s 1 ) ) B i j ) ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) Re ( t r ( j = 1 q W j H ( n 1 ) W j ( s ) ) ) )

= 1 i = 1 p V i ( n + 1 ) ( j = 1 q U j ( s + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( s + 1 ) ) ) + i = 1 p Re ( t r ( T i H ( s ) M i ( s ) ) ) σ ( s ) i = 1 p Re ( t r ( T i H ( n ) T i ( s ) ) ) + i = 1 p Re ( t r ( T i H ( s 1 ) M i ( s ) ) ) σ ( s 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( s 1 ) ) ) j = 1 q t r ( W j H ( n 1 ) N j ( n ) ) τ ( n 1 ) t r ( j = 1 q W j H ( n 1 ) W j ( s ) ) )

= j = 1 q U j ( s + 1 ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( s + 1 ) ) ) j = 1 q Re ( t r ( W j H ( n 1 ) W j ( s ) ) ) i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) (3.4)

i = 1 p Re ( t r ( T i H ( n + 1 ) T i ( s ) ) ) = i = 1 p Re ( t r ( ( j = 1 q A i j U ˜ j ( n + 1 ) B i j ) H T i ( s ) ) ) = 1 j = 1 q U j ( n + 1 ) i = 1 p Re ( t r ( ( j = 1 q A i j U j ( n + 1 ) B i j ) H T i ( s ) ) )

= 1 j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( ( A i j ( W j ( n ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) σ ( n ) U ˜ j ( n ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) U ˜ j ( n 1 ) ) B i j ) H T i ( s ) ) ) = 1 j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( ( A i j W j ( n ) B i j i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) σ ( n ) T i ( n ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) T i ( n 1 ) ) H T i ( s ) ) ) = 1 j = 1 q U j ( n + 1 ) ( i = 1 p Re ( t r ( j = 1 q B i j H W j H ( n ) A i j H T i ( s ) ) ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) σ ( n ) i = 1 p Re ( t r ( T i H ( n ) T i ( s ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) )

= 1 j = 1 q U j ( n + 1 ) ( i = 1 p j = 1 q Re ( t r ( W j H ( n ) ( A i j H T i ( s ) B i j H ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) ) = 1 j = 1 q U j ( n + 1 ) ( 1 2 i = 1 p j = 1 q Re ( t r ( W j H ( n ) ( A i j H T i ( s ) B i j H + S ( A i j H T i ( s ) B i j H ) H S ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) )

= 1 j = 1 q U j ( n + 1 ) ( 1 2 i = 1 p j = 1 q Re ( t r ( W j H ( n ) ( A i j H ( V i ( s + 1 ) + i = 1 p Re ( t r ( T i H ( s ) M i ( s ) ) ) τ ( s ) V ˜ i ( s ) + j = 1 q Re ( t r ( W j H ( s 1 ) N j ( s ) ) ) τ ( s 1 ) V ˜ i ( s 1 ) ) B i j H + S ( A i j H ( V i ( s + 1 ) + i = 1 p Re ( t r ( T i H ( s ) M i ( s ) ) ) τ ( s ) V ˜ i ( s ) + j = 1 q Re ( t r ( W j H ( s 1 ) N j ( s ) ) ) τ ( s 1 ) V ˜ i ( s 1 ) ) B i j H ) H S ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) )

= 1 j = 1 q U j ( n + 1 ) ( j = 1 q Re ( t r ( W j H ( n ) ( W j ( s + 1 ) i = 1 p V i ( s + 1 ) + i = 1 p Re ( t r ( T i H ( s ) M i ( s ) ) ) τ ( s ) W j ( s ) + j = 1 q Re ( t r ( W j H ( s 1 ) N j ( s ) ) ) τ ( s 1 ) W j ( s 1 ) ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) σ ( n 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) ) = i = 1 p V i ( s + 1 ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( s + 1 ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) j = 1 q U j ( n + 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( s ) ) ) σ ( n 1 ) (3.5)

s = n 1 ,由于 s < n ,根据上述(3.1)~(3.3),可得

i = 1 p Re ( t r ( R i H ( n + 1 ) T i ( n 1 ) ) ) = 0.

j = 1 q Re ( t r ( W j H ( n + 1 ) W j ( n 1 ) ) ) = j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) j = 1 q Re ( t r ( W j H ( n 1 ) W j ( n 1 ) ) ) i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 )

= j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) i = 1 p V i ( n + 1 ) = j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) j = 1 q Re ( t r ( W j H ( n 1 ) i = 1 p A i j H T i ( n ) B i j H ) ) i = 1 p V i ( n + 1 ) = j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) j = 1 q i = 1 p Re ( t r ( ( A i j W j ( n 1 ) B i j ) H T i ( n ) ) ) i = 1 p V i ( n + 1 )

= j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) 1 i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( ( j = 1 q U j ( n ) T i ( n ) + i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n 1 ) ) ) σ ( n 1 ) T i ( n 1 ) + i = 1 p Re ( t r ( T i H ( n 2 ) M i ( n 1 ) ) ) σ ( n 2 ) T i ( n 2 ) ) H T i ( n ) ) ) = j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) j = 1 q U j ( n ) i = 1 p V i ( n + 1 ) i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) = 0.

i = 1 p Re ( t r ( T i H ( n + 1 ) T i ( n 1 ) ) ) = i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) j = 1 q U j ( n + 1 ) i = 1 p Re ( t r ( T i H ( n 1 ) T i ( n 1 ) ) ) σ ( n 1 ) = i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( n ) ) ) j = 1 q U j ( n + 1 ) = i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) i = 1 p Re ( t r ( T i H ( n 1 ) ( j = 1 q A i j W j ( n ) B i j ) ) ) j = 1 q U j ( n + 1 )

= i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) 1 j = 1 q U j ( n + 1 ) i = 1 p j = 1 q Re ( t r ( ( A i j H T i ( n 1 ) B i j H ) W j ( n ) ) ) = i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) 1 j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( 1 2 i = 1 p ( A i j H T i ( n 1 ) B i j H + S ( A i j H T i ( n 1 ) B i j H ) H S ) H W j ( n ) ) ) = i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) 1 j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( ( i = 1 p V i ( n ) W j ( n ) + Re i = 1 p t r ( T i H ( n 1 ) M i ( n 1 ) ) τ ( n 1 ) W j ( n 1 ) + Re j = 1 q t r ( W j H ( n 2 ) N j ( n 1 ) ) τ ( n 2 ) W j ( n 2 ) ) H W j ( n ) ) )

= i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) i = 1 p V i ( n ) j = 1 q U j ( n + 1 ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) = 0.

s = n 时,通过归纳假设可得

i = 1 p Re ( t r ( R i H ( n + 1 ) T i ( n ) ) ) = i = 1 p Re ( t r ( ( R i ( n ) α ( n ) T i ( n ) ) H T i ( n ) ) ) = i = 1 p Re ( t r ( R i H ( n ) T i ( n ) ) ) i = 1 p Re ( t r ( T i H ( n ) R i ( n ) ) ) i = 1 p T i ( n ) 2 i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) = i = 1 p Re ( t r ( R i H ( n ) T i ( n ) ) ) i = 1 p Re ( t r ( T i H ( n ) R i ( n ) ) ) = 0.

j = 1 q Re ( t r ( W j H ( n + 1 ) W j ( n ) ) ) = 1 i = 1 p V i ( n + 1 ) j = 1 q Re ( t r ( ( 1 2 i = 1 p ( A i j H T i ( n ) B i j H + S ( A i j H T i ( n ) B i j H ) H S ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) W j ( n ) j = 1 q Re ( t r ( W j H ( n 1 ) N j ( n ) ) ) τ ( n 1 ) W j ( n 1 ) ) W j ( n ) ) ) = 1 i = 1 p V i ( n + 1 ) ( i = 1 p Re ( t r ( T i H ( n ) j = 1 q A i j W j ( n ) B i j ) ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) τ ( n ) j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) )

= 1 i = 1 p V i ( n + 1 ) ( i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) j = 1 q W j ( n ) 2 j = 1 q Re ( t r ( W j H ( n ) W j ( n ) ) ) ) = 1 i = 1 p V i ( n + 1 ) ( i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) ) = 0.

i = 1 p Re ( t r ( T i H ( n + 1 ) T i ( n ) ) ) = 1 j = 1 q U j ( n + 1 ) i = 1 p Re ( t r ( ( j q A i j W j ( n ) B i j i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) σ ( n ) T i ( n ) i = 1 p Re ( t r ( T i H ( n 1 ) M i ( k ) ) ) σ ( n 1 ) T i ( n 1 ) ) H T i ( n ) ) )

= 1 j = 1 q U j ( n + 1 ) ( i = 1 p Re ( t r ( M i H ( n ) T i ( n ) ) ) i = 1 p Re ( t r ( T i H ( n ) M i ( n ) ) ) i = 1 p T i ( n ) 2 i = 1 p Re ( t r ( T i H ( n ) T i ( n ) ) ) ) = 1 j = 1 q U j ( n + 1 ) ( i = 1 p Re ( t r ( M i H ( n ) T i ( n ) ) ) i = 1 p Re ( t r ( M i H ( n ) T i ( n ) ) ) ) = 0.

因此,对于次数 n + 1 成立,数学归纳法证明完成。 □

定理3.2假设矩阵方程组(1.1)是相容的,在没有舍入误差的情况下,对任意初始矩阵 X j ( 1 ) n × n ,根据算法3.1,可以在有限步迭代得到矩阵方程组(1.1)的perhermitian解。

证明 首先,定义空间 m × l × m × l × × m × l 的实内积为 T i , T j = Re ( t r ( T j H T i ) ) ,其中 T i , T j m × l , i , j = 1 , 2 , , p 。如果 T i ( k ) 0 , k = 1 , 2 , , p m l ,那么 { T 1 ( k ) , T 2 ( k ) , , T p ( k ) } 是该空间的一组正交基。根据(3.1)式可以得到 R i ( p m l + 1 ) = 0 ,即 X j ( p m l + 1 ) , j = 1 , 2 , , q 是矩阵方程(1.1)的perhermitian解。

定理3.3 算法3.1中残量范数具有以下性质

i = 1 p R i ( k + 1 ) 2 i = 1 p R i ( k ) 2 .

证明:

i = 1 p R i ( k + 1 ) 2 = i = 1 p Re ( t r ( R i H ( k + 1 ) R i ( k + 1 ) ) ) = i = 1 p Re ( t r ( ( R i ( k ) α ( k ) T i ( k ) ) H ( R i ( k ) α ( k ) T i ( k ) ) ) ) = i = 1 p Re ( t r ( ( R i H ( k ) α ( k ) T i H ( k ) ) ( R i ( k ) α ( k ) T i ( k ) ) ) ) = i = 1 p Re ( t r ( R i H ( k ) R i ( k ) ) ) + α 2 ( k ) i = 1 p Re ( t r ( T i H ( k ) T i ( k ) ) ) 2 α ( k ) i = 1 p Re ( t r ( R i H ( k ) T i ( k ) ) )

= i = 1 p R i ( k ) 2 + α 2 ( k ) σ ( k ) 2 α 2 ( k ) σ ( k ) = i = 1 p R i ( k ) 2 α 2 ( k ) σ ( k ) i = 1 p R i ( k ) 2 .

定理3.3表明,如果 i = 1 p R i ( k ) 2 0 i = 1 p Re ( t r ( R i H ( k ) T i ( k ) ) ) 0 ,那么 i = 1 p R i ( k ) 2 是严格单调递减的,所以算法3.1是收敛的。

3.3. 最小范数Perhermitian解

接下来考虑Sylvester矩阵方程组(1.1)的最佳逼近perhermitian解,即最小范数perhermitian解。

引理3.1 [19] [24] [25] [26] 设线性矩阵方程 A x = b 有解 x R ( A T ) ,其中 R ( A T ) 表示 A T 的列空间,则 x A x = b 的唯一最小范数解。

定理3.4 设矩阵方程组(1.1)是相容的,初始值取 X j ( 1 ) = i = 1 p ( A i j H E i B i j H + S ( A i j H E i B i j H ) H S )

Z j ( 1 ) = i = 1 p ( A i j H F i B i j H + S ( A i j H F i B i j H ) H S ) j = 1 , 2 , , q ,其中 E i F i 为任意的 m × l 矩阵,特别地,取

X j ( 1 ) = 0 Z j ( 1 ) = 0 ,S是适当维数的反射矩阵。如果矩阵方程组(1.1)有perhermitian解,那么算法3.1经过有限步迭代求出的解是矩阵方程(1.1)的唯一的最小范数perhermitian解 X j j = 1 , 2 , , q

证明:根据Kronecker积,将 X j ( 1 ) = i = 1 p ( A i j H E i B i j H + S ( A i j H E i B i j H ) H S ) 改写为

( ( v e c ( X 1 ( 1 ) ) ) H ( v e c ( X q ( 1 ) ) ) H ) X ( 1 ) = ( B 11 A 11 H S A 11 H S B 11 B p 1 A p 1 H S A p 1 H S B p 1 B 1 q A 1 q H S A 1 q H S B 1 q B p q A p q H S A p q H S B p q ) A H ( ( v e c ( E 1 ) ) H ( v e c ( E 1 H ) ) H ( v e c ( E p ) ) H ( v e c ( E p H ) ) H ) M

因此,如果通过上述选择 X j ( 1 ) ,那么通过算法3.1得到的 X j ( k ) 满足

X ( k ) = ( ( v e c ( X 1 ( k ) ) ) H , , ( v e c ( X q ( k ) ) ) H ) H R ( A H ) ,其中 R ( A H ) 表示 A H 的列空间。由引理3.1可知,如果 X j ( 1 ) = i = 1 p ( A i j H E i B i j H + S ( A i j H E i B i j H ) H S ) Z j ( 1 ) = i = 1 p ( A i j H F i B i j H + S ( A i j H F i B i j H ) H S ) ,作为初始解,

特别是 X j ( 1 ) = 0 Z j ( 1 ) = 0 ,那么可以通过算法3.1来求解矩阵方程组(1.1)的唯一最小范数perhermitian解。

4. 数值算例

在这个部分,我们给出两个算例来说明所提出的算法的有效性。当 r ( k ) = i = 1 p R i ( k ) 2 10 10 时,停止迭代,并且 X j ( k ) 被视为矩阵方程组(1.1)的唯一最小范数perhermitian解。

例4.1 给定Sylvester矩阵方程为

A 11 X 1 B 11 + A 12 X 2 B 12 = C 1 ,

其中

A 11 = ( 6 + 5 i 5 + 6 i 1 + 6 i 3 + 7 i 10 + 4 i 2 + i 2 + i 9 + 10 i 3 + 2 i 3 + 9 i 4 + 6 i 6 + 3 i ) , B 11 = ( 8 + 5 i 9 + 2 i 9 + 9 i 1 + 3 i 6 + 3 i 7 + i 2 + 4 i 6 + 4 i 2 + 7 i 4 + 3 i 1 + 10 i 4 + 7 i ) ,

A 12 = ( 4 + 3 i 10 + 2 i 4 + i 2 + 5 i 1 + 5 i 8 + 7 i 3 + 7 i 4 + i 2 + 10 i 10 + 2 i 6 + 8 i 10 + 4 i ) , B 12 = ( 6 + 2 i 9 + 4 i 8 + 3 i 6 + 4 i 10 + 8 i 9 + 9 i 5 + 3 i 8 + 9 i 10 + 2 i 2 + 3 i 6 + 9 i 1 + i ) ,

C 1 = 10 2 × ( 1.3500 + 2.8400 i 1.6000 + 2.9600 i 0.1800 + 2.6500 i 0.3600 + 2.5500 i 0.7200 + 3.1900 i 0.4100 + 2.2600 i 0.6400 + 3.4700 i 0.1700 + 2.0000 i 0.6300 + 3.2400 i 0.7500 + 2.5500 i 0.8800 + 2.7500 i 0.1600 + 2.4200 i 1.2000 + 4.0300 i 1.1800 + 3.8500 i 0.1000 + 4.1700 i 0.1300 + 3.0800 i ) ,

求其唯一最小范数perhermitian解。

选取初始矩阵

X 1 ( 1 ) = 10 3 × ( 0.5979 + 0.0000 i 0.9305 + 0.2703 i 0.2987 0.2502 i 0.9305 0.2703 i 1.0413 + 0.0000 i 0.4424 0.5889 i 0.2987 + 0.2502 i 0.4424 + 0.5889 i 0.1692 + 0.0000 i ) ,

X 1 ( 2 ) = 10 3 × ( 0.8504 + 0.0000 i 0.9667 0.3004 i 0.7801 + 0.0635 i 0.9667 + 0.3004 i 1.1728 + 0.0000 i 0.9089 + 0.4224 i 0.7801 0.0635 i 0.9089 0.4224 i 0.5345 + 0.0000 i ) ,

根据算法3.1,经过24步迭代终止,得到该矩阵方程的唯一最小范数perhermitian解:

X 1 ( 24 ) = 10 3 × ( 1.1948 + 0.0000 i 1.8609 + 0.5406 i 0.5974 0.5004 i 1.8609 0.5406 i 2.0817 + 0.0000 i 0.8847 1.1779 i 0.5974 + 0.5004 i 0.8847 + 1.1779 i 0.3373 + 0.0000 i ) ,

X 2 ( 24 ) = 10 3 × ( 1.6998 + 0.0000 i 1.9334 0.6008 i 1.5601 + 0.1270 i 1.9334 + 0.6008 i 2.3446 + 0.0000 i 1.8178 + 0.8648 i 1.5601 0.1270 i 1.8178 0.8648 i 1.0680 + 0.0000 i ) ,

并且,相应残差的范数 r = 2.4009 × 10 13 < 10 10

例4.2 给定Sylvester矩阵方程组为

{ A 11 X 1 B 11 + A 12 X 2 B 12 = C 1 A 21 X 1 B 21 + A 22 X 2 B 22 = C 2

其中

A 11 = ( 10 + 2 i 9 + 6 i 1 + 8 i 8 + 4 i 5 + 4 i 4 + i 10 + 6 i 9 + i 9 + 7 i 6 + 10 i 6 + 8 i 5 + 3 i ) , B 11 = ( 4 + i 9 + 8 i 4 + 6 i 4 + 3 i 6 + 9 i 6 + 5 i 7 + 5 i 6 + 3 i 5 + 2 i 6 + 10 i 6 + 5 i 3 + 4 i ) ,

A 12 = ( 9 + 9 i 4 + 3 i 8 + 9 i 3 + 10 i 4 + 4 i 8 + 4 i 10 + 3 i 8 + 6 i 3 + 7 i 4 + 5 i 7 + 4 i 9 + 7 i ) , B 12 = ( 5 + 6 i 5 + 6 i 5 + 6 i 10 + 3 i 8 + 4 i 10 + 3 i 1 + 10 i 1 + 9 i 1 + 2 i 10 + 2 i 2 + 6 i 1 + 3 i ) ,

A 21 = ( 2 + 5 i 9 + 5 i 2 + i 10 + 8 i 2 + i 7 + 10 i 3 + 4 i 10 + 8 i 4 + 7 i 2 + 9 i 6 + 5 i 4 + 9 i ) , B 21 = ( 3 + 3 i 5 + 3 i 10 + 6 i 5 + 7 i 6 + 4 i 8 + 4 i 10 + 5 i 3 + 10 i 8 + 9 i 7 + 2 i 6 + 10 i 4 + 4 i ) ,

A 22 = ( 5 + 7 i 4 + 9 i 4 + 3 i 7 + 5 i 3 + 4 i 10 + i 2 + 6 i 4 + 3 i 2 + 9 i 8 + 9 i 7 + 3 i 5 + 10 i ) , B 22 = ( 5 + 5 i 4 + 4 i 3 + 7 i 10 + 2 i 4 + 2 i 5 + i 1 + 2 i 1 + 10 i 5 + 9 i 4 + 10 i 1 + 9 i 2 + i ) ,

C 1 = 10 2 × ( 0.2800 + 3.4100 i 1.0800 + 4.8400 i 0.4600 + 4.1600 i 0.6200 + 3.1800 i 0.1100 + 2.4200 i 1.1900 + 3.7100 i 0.4700 + 3.1100 i 0.1000 + 2.7500 i 1.7100 + 3.4200 i 1.8500 + 5.5200 i 0.2500 + 4.1600 i 0.9900 + 2.9800 i 0.2200 + 3.0700 i 0.9400 + 4.8200 i 0.8600 + 3.9600 i 0.0700 + 3.1600 i ) ,

C 2 = 10 2 × ( 0.1300 + 2.6800 i 0.4800 + 2.6700 i 0.1400 + 2.9500 i 0.8900 + 2.9500 i 0.3500 + 3.8800 i 1.1600 + 3.4500 i 0.0900 + 4.5500 i 0.2000 + 3.1100 i 0.8700 + 3.2400 i 0.1600 + 2.9700 i 0.9700 + 3.4000 i 0.9800 + 3.3600 i 1.0200 + 4.0100 i 0.3100 + 3.6600 i 1.8800 + 4.3100 i 0.6600 + 3.9000 i ) ,

求其唯一最小范数perhermitian解。

选取初始矩阵

X 1 ( 1 ) = 10 3 × ( 2.2322 + 0.0000 i 2.4950 0.4177 i 1.8794 0.1577 i 2.4950 + 0.4177 i 2.8320 + 0.0000 i 2.2000 + 0.1784 i 1.8794 + 0.1577 i 2.2000 0.1784 i 1.5266 + 0.0000 i ) ,

X 2 ( 1 ) = 10 3 × ( 2.3482 + 0.0000 i 1.6111 0.3890 i 1.7942 0.0223 i 1.6111 + 0.3890 i 1.2291 + 0.0000 i 1.2886 + 0.3338 i 1.7942 + 0.0223 i 1.2886 0.3338 i 1.4593 + 0.0000 i ) ,

根据算法3.1,经过19步迭代终止,得到该矩阵方程的唯一最小范数perhermitian解:

X 1 ( 19 ) = 10 3 × ( 4.4633 + 0.0000 i 4.9899 0.8353 i 3.7589 0.3154 i 4.9899 + 0.8353 i 5.6630 + 0.0000 i 4.4000 + 0.3567 i 3.7589 + 0.3154 i 4.4000 0.3567 i 3.0522 + 0.0000 i ) ,

X 2 ( 19 ) = 10 3 × ( 4.6953 + 0.0000 i 3.2223 0.7781 i 3.5884 0.0445 i 3.2223 + 0.7781 i 2.4572 + 0.0000 i 2.5773 + 0.6675 i 3.5884 + 0.0445 i 2.5773 0.6675 i 2.9175 + 0.0000 i ) ,

并且,相应残差的范数 r = 4.4335 × 10 12 < 10 10

Figure 1. Convergence curves for Example 4.1

图1. 例4.1的收敛曲线

Figure 2. Convergence curves for Example 4.2

图2. 例4.2的收敛曲线

上述两个例子表明,我们的方法能够有效的获得Sylvester矩阵方程组的唯一最小范数perhermitian解。此外,从图1图2可以看出,算法在数值上是非常可靠的。

5. 总结

在本文中,我们利用BCR算法来求解Sylvester矩阵方程组(1.1)的perhermitian解。我们证明了算法是收敛的,在不存在舍入误差的情况下,可以在有限步内得到唯一的最小范数perhermitian解。最后,通过两个算例说明了算法的可行性和有效性。

NOTES

*通讯作者。

参考文献

[1] Petkov, P.H., Christov, N.D. and Konstantinov, M.M. (1991) Computational Methods for Linear Control Systems. Pren-tice-Hall, Hoboken, USA.
[2] Helmke, U. and Moore, J. (1996) Optimization and Dynamical Systems. Proceedings of the IEEE, 84, 907.
https://doi.org/10.1109/JPROC.1996.503147
[3] 程云鹏, 张凯院, 徐仲. 矩阵论[M]. 第3版. 西安: 西北工业出版社, 2006.
[4] 张晓宁. 约束矩阵方程求解的交替投影算法及其在图像恢复中的应用[D]: [硕士学位论文]. 桂林: 桂林电子科技大学, 2015.
[5] 杨清宇, 马训鸣, 朱洪艳. 现代控制理论[M]. 西安: 西安交通大学出版社, 2013.
[6] 孙志忠, 袁慰平, 闻珍初. 数值分析[M]. 第3版. 南京: 东南大学出版社, 2010.
[7] Hu, D.Y. and Reichel, L. (1992) Krylov-Subspace Methods for the Sylvester Equation. Linear Algebra and Its Applications, 172, 283-313.
https://doi.org/10.1016/0024-3795(92)90031-5
[8] El Guennouni, A., Jbilou, K. and Riquet, A.J. (2002) Block Krylov Subspace Methods for Solving Large Sylvester Equations. Numerical Algorithms, 29, 75-96.
https://doi.org/10.1023/A:1014807923223
[9] Beik, F.P.A. and Salkuyeh, D.K. (2011) On the Global Krylov Subspace Methods for Solving General Coupled Matrix Equations. Computers & Mathematics with Applications, 62, 4605-4613.
https://doi.org/10.1016/j.camwa.2011.10.043
[10] Bouhamidi, A., Hached, M., Heyouni, M. and Jbi-lou, K. (2013) A Preconditioned Block Arnoldi Method for Large Sylvester Matrix Equations. Numerical Linear Algebra with Applications, 20, 208-219.
https://doi.org/10.1002/nla.831
[11] Kaabi, A., Toutounian, F. and Kerayechian, A. (2006) Preconditioned Galerkin and Minimal Residual Methods for Solving Sylvester Equations. Applied Mathematics and Computation, 181, 1208-1214.
https://doi.org/10.1016/j.amc.2006.02.021
[12] 徐冬梅, 鲍亮, 蔡兆克. 预条件Krylov子空间法求解耦合Sylvester矩阵方程[J]. 华东理工大学学报(自然科学版), 2015, 41(6): 871-876.
[13] Dehghan, M. and Hajarian, M. (2008) An Iterative Algorithm for the Reflexive Solutions of the Generalized Coupled Sylvester Matrix Equations and Its Optimal Approximation. Applied Mathematics and Computation, 202, 571-588.
https://doi.org/10.1016/j.amc.2008.02.035
[14] Dehghan, M. and Hajarian, M. (2010) An Iterative Method for Solving the Generalized Coupled Sylvester Matrix Equations over Generalized Bisymmetric Matrices. Applied Mathe-matical Modelling, 34, 639-654.
https://doi.org/10.1016/j.apm.2009.06.018
[15] Dehghan, M. and Hajarian, M. (2010) The General Coupled Matrix Equations over Generalized Bisymmetric Matrices. Linear Algebra and Its Applications, 432, 1531-1552.
https://doi.org/10.1016/j.laa.2009.11.014
[16] Dehghan, M. and Hajarian, M. (2010) An Efficient Algorithm for Solving General Coupled Matrix Equations and Its Application. Mathematical and Computer Modelling, 51, 1118-1134.
https://doi.org/10.1016/j.mcm.2009.12.022
[17] Lv, C.Q. and Ma, C.F. (2018) BCR Method for Solving General-ized Coupled Sylvester Equations over Centrosymmetric or Anti-Centrosymmetric Matrix. Computers & Mathematics with Applications, 75, 70-88.
https://doi.org/10.1016/j.camwa.2017.08.041
[18] Hajarian, M. (2016) Symmetric Solutions of the Coupled Gener-alized Sylvester Matrix Equations via BCR Algorithm. Journal of the Franklin Institute, 353, 3233-3248.
https://doi.org/10.1016/j.jfranklin.2016.06.008
[19] Yan, T.X. and Ma, C.F. (2020) The BCR Algorithms for Solving the Reflexive or Anti-Reflexive Solutions of Generalized Coupled Sylvester Matrix Equations. Journal of the Franklin Institute, 357, 12787-12807.
https://doi.org/10.1016/j.jfranklin.2020.09.030
[20] Hill, R.D., Bates, R.G. and Waters, S.R. (1990) On Perhermit-ian Matrices. SIAM Journal on Matrix Analysis and Applications, 11, 173-179.
https://doi.org/10.1137/0611011
[21] Pressman, I.S. (1998) Matrices with Multiple Symmetry Properties: Applica-tions of Centrohermitian and Perhermitian Matrices. Linear Algebra and Its Applications, 284, 239-258.
https://doi.org/10.1016/S0024-3795(98)10144-1
[22] Wu, A.G. and Zhang, Y. (2017) Complex Conjugate Matrix Equations for Systems and Control. Springer, Singapore.
https://doi.org/10.1007/978-981-10-0637-1
[23] Wu, A.G., Feng, G., Duan, G.R. and Wu, W.J. (2010) Iterative Solutions to Coupled Sylvester-Conjugate Matrix Equations. Computers & Mathematics with Applications, 60, 54-66.
https://doi.org/10.1016/j.camwa.2010.04.029
[24] Liang, K. and Liu, J. (2011) Iterative Algorithms for the Mini-mum-Norm Solution and the Least-Squares Solution of the Linear Matrix Equations , . Applied Mathematics and Computation, 218, 3166-3175.
https://doi.org/10.1016/j.amc.2011.08.052
[25] Peng, Y.X., Hu, X.Y. and Zhang, L. (2005) An Iteration Method for the Symmetric Solutions and the Optimal Approximation Solution of the Matrix Equation . Applied Math-ematics and Computation, 160, 763-777.
https://doi.org/10.1016/j.amc.2003.11.030
[26] Peng, Z.Y., Wang, L. and Peng, J.J. (2012) The Solutions of Ma-trix Equation over a Matrix Inequality Constraint. SIAM Journal on Matrix Analysis and Applications, 33, 554-568.
https://doi.org/10.1137/100808678