内应力重分布驱动且具有广义跳跃步长的反常扩散研究
Research on Anomalous Diffusion Driven by Internal Stress Redistribution with Generalized Jump Length
摘要: 基于连续时间随机游走的框架, 考虑了随机等待时间由内应力重分布驱动并且具有指数截断Lévy分布的跳跃步长所导致的反常扩散现象。 给出了一个广义扩散方程用于描述这种反常扩散 现象,并对其反常扩散性质进行了分析。
Abstract: Within the framework of a continuous-time random walk, the phenomenon of anoma- lous diffusion is considered, driven by random waiting time induced by internal stress redistribution and characterized by jump length with an exponentially truncated Lévy distribution. A generalized diffusion equation is provided to describe this anomalous diffusion phenomenon, and its anomalous diffusion properties are analyzed.
文章引用:蒲文东. 内应力重分布驱动且具有广义跳跃步长的反常扩散研究[J]. 应用数学进展, 2023, 12(12): 5127-5136. https://doi.org/10.12677/AAM.2023.1212503

参考文献

[1] Sahimi, M. (2011) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. John Wiley & Sons, Hoboken.
[2] 王景白, 赵建世, 胡诗若. 地下水溶质反常运移的分数阶对流扩散模型研究进展[J]. 中国环境科学, 2022, 42(12): 5845-5855.
[3] Yan, H., Xie, H., Nikolaev, P., et al. (2023) Analytical Model for Steady-State Solute Diffusion in Non-Isothermal Fractured Porous Media. Journal of Hydrology, 616, Article 128872. [Google Scholar] [CrossRef
[4] Jiang, C., Cui, C., Li, L., et al. (2014) The Anomalous Diffusion of a Tumor Invading with Different Surrounding Tissues. PLOS ONE, 9, e109784. [Google Scholar] [CrossRef] [PubMed]
[5] Morales-Delgado, V.F., G´omez-Aguilar, J.F., Saad, K.M., et al. (2019) Analytic Solution for Oxygen Diffusion from Capillary to Tissues Involving External Force Effects: A Fractional Calculus Approach. Physica A: Statistical Mechanics and its Applications, 523, 48-65. [Google Scholar] [CrossRef
[6] 魏文杰, 陈文龙, 戴晓彬, 等. 生物大分子介质中的反常扩散动力学理论[J]. 化学学报, 2023, 81(8): 967-978.
[7] Huc, M. and Main, I.G. (2003) Anomalous Stress Diffusion in Earthquake Triggering: Corre- lation Length, Time Dependence, and Directionality. Journal of Geophysical Research: Solid Earth, 108, Article 2324. [Google Scholar] [CrossRef
[8] 包景东. 分数布朗运动和反常扩散[J]. 物理学进展, 2005(4): 359-367.
[9] 庞国飞, 陈文, 张晓椒, 等. 复杂介质中扩散和耗散行为的分数阶导数唯象建模[J]. 应用数学和力学, 2015, 36(11): 1117-1134.
[10] Roman, H.E. and Alemany, P.A. (1994) Continuous-Time Random Walks and the Fractional Diffusion Equation. Journal of Physics A: Mathematical and General, 27, 3407. [Google Scholar] [CrossRef
[11] 林方, 包景东. 基于连续时间无规行走模型研究反常扩散[J]. 物理学报, 2008(2): 696-702.
[12] Porra, J.M., Wang, K.G. and Masoliver, J. (1996) Generalized Langevin Equations: Anoma- lous Diffusion and Probability Distributions. Physical Review E, 53, 5872-5881. [Google Scholar] [CrossRef
[13] 陈文. 反常扩散的分数阶微分方程和统计模型[M]. 北京: 科学出版社, 2017.
[14] Blumen, A., Zumofen, G. and Klafter, J. (1989) Transport Aspects in Anomalous Diffusion: L´evy Walks. Physical Review A, 40, 3964-3973. [Google Scholar] [CrossRef
[15] Liu, J., Zhu, Y., He, P., et al. (2017) Transient Bi-Fractional Diffusion: Space-Time Coupling Inducing the Coexistence of Two Fractional Diffusions. The European Physical Journal B, 90, Article No. 70. [Google Scholar] [CrossRef
[16] Cecconi, F., Banavar, J.R. and Maritan, A. (2000) Scaling Behavior in a Nonlocal and Non- linear Diffusion Equation. Physical Review E, 62, R5879-R5882. [Google Scholar] [CrossRef
[17] Chechkin, A., Sokolov, I.M. and Klafter, J. (2012) Natural and Modified Forms of Distributed- Order Fractional Diffusion Equations. In: Klafter, J., Lim, S.C. and Metzler, R., Eds., Frac- tional Dynamics: Recent Advances, World Scientific Publishing, 107-127. 0005 [Google Scholar] [CrossRef
[18] Liemert, A. and Kienle, A. (2015) Fundamental Solution of the Tempered Fractional Diffusion Equation. Journal of Mathematical Physics, 56, Article 113504. [Google Scholar] [CrossRef
[19] Sabzikar, F., Meerschaert, M.M. and Chen, J. (2015) Tempered Fractional Calculus. Journal of Computational Physics, 293, 14-28. [Google Scholar] [CrossRef] [PubMed]
[20] Cleland, J. and Williams, M.A.K. (2021) Anomalous Diffusion Driven by the Redistribution of Internal Stresses. Physical Review E, 104, Article 014123. [Google Scholar] [CrossRef
[21] Cartea, A. and del-Castillo-Negrete, D. (2007) Fluid Limit of the Continuous-Time Random Walk with General L´evy Jump Distribution Functions. Physical Review E, 76, Article 041105. [Google Scholar] [CrossRef
[22] Sandev, T., Metzler, R. and Chechkin, A. (2018) From Continuous Time Random Walks to the Generalized Diffusion Equation. Fractional Calculus and Applied Analysis, 21, 10-28. [Google Scholar] [CrossRef
[23] Podlubny, I. (1998) Fractional Differential Equations: An Introduction to Fractional Deriva- tives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam.
[24] Montroll, E.W. and Weiss, G.H. (1965) Random Walks on Lattices. II. Journal of Mathematical Physics, 6, 167-181. [Google Scholar] [CrossRef
[25] Prabhakar, T.R. (1971) A Singular Integral Equation with a Generalized Mittag-Leffler Func- tion in the Kernel. Yokohama Mathematical Journal, 19, 7-15.
[26] Lin, H., Lu, C., Wang, H.Y., et al. (2020) Non-Trivial Avalanches Triggered by Shear Banding in Compression of Metallic Glass Foams. Proceedings of the Royal Society A, 476, Article 20200186. [Google Scholar] [CrossRef
[27] Ken-Iti, S. (1999) L´evy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge.