纳米氧化铈暴露下大型溞MAPK基因家族的表达分析
Expression Analysis of MAPK Gene Family in Daphnia magna Exposed to Nano Cerium Dioxide
DOI: 10.12677/AMS.2023.104031, PDF, HTML, XML, 下载: 120  浏览: 242  国家自然科学基金支持
作者: 张园雯, 周 妍, 刘 琪, 康欣怡, 陈 晶, 魏 杰:大连海洋大学,辽宁省省级高校水生生物学重点实验室,辽宁 大连
关键词: 纳米氧化铈大型溞MAPK基因家族结构域 Nano Cerium Dioxide Daphnia magna MAPK Gene Family Structural Domain
摘要: MAPK基因家族广泛参与生物体细胞内的各种生命过程,与生物对环境胁迫的应答相关。然而,在纳米氧化铈(Nano cerium dioxide, nCeO2)暴露下大型溞MAPK基因家族成员的作用机制还不清楚。本文利用BLAST、HMM和SMART等方法在大型溞基因组中鉴定MAPK基因家族成员,分析大型溞各个MAPK基因的理化性质、染色体定位、结构域、保守基序、系统发生关系等,并利用qPCR分析不同浓度、不同时间nCeO2暴露下各个MAPK基因家族成员的表达模式。结果鉴定出14个大型溞的MAPK基因,分布于8条染色体上。MAPK基因家族编码的蛋白质序列长度为361~1546 aa,分子量为38.93~77.02 kDa,等电点在5.3~9.51。12个MAPK蛋白具有S_TKc结构域,4个保守基序。系统发生分析显示,大型溞的14个MAPK基因分别属于4个亚家族,基因序列在进化过程中具有较高的保守性。在50和150 mg/L nCeO2暴露48 h后,大型溞的7个MAPK基因DmMAPK-p38b、DmMAPK4、DmMAP2K4、DmMAP3K4、DmMAP3K7、DmMAP3K11、DmMAP4K5的转录表达水平与对照组相比,极显著上调。结果提示,MAPK基因家族成员与大型溞对nCeO2的胁迫应答调控相关。本研究为评估纳米材料对水生生物的潜在毒性提供科学参考。
Abstract: The MAPK gene family is widely involved in various life processes in the cells of living organisms and is associated with the response of organisms to environmental stresses. However, the mechanism of MAPK action in Daphnia magna exposed to Nano cerium dioxide (nCeO2) is still unclear. Herein, we used bioinformatics methods such as BLAST, HMM and SMART to identify MAPK gene family members in the Daphnia magna genome, and analyzed the physicochemical properties, chromosomal localization, structural domains, conserved motifs, and phylogenetic relationships of individual MAPK genes in Daphnia magna. The MAPK gene family encodes proteins with sequence lengths of 361~1546 aa, molecular weights of 38.93~77.02 kDa, and isoelectric points in the range of 5.3~9.51. Twelve MAPK proteins have the S_TKc structural domain and four conserved motifs. Phylogenetic analysis showed that the 14 MAPK genes of Daphnia magna belonged to four subfamilies, and the gene sequences were highly conserved during evolution. The expression of seven MAPK genes, DmMAPK-p38b, DmMAPK4, DmMAP2K4, DmMAP3K4, DmMAP3K7, DmMAP3K11, and DmMAP4K5, was highly significantly up-regulated in Daphnia magna compared with the control group after 48 h of exposure to 50 and 150 mg/L nCeO2. The results suggest that members of the MAPK gene family are associated with the stress response of Daphnia magna to nCeO2 exposure. This study provides a scientific reference for assessing the potential toxicity of nanomaterials to aquatic organisms.
文章引用:张园雯, 周妍, 刘琪, 康欣怡, 陈晶, 魏杰. 纳米氧化铈暴露下大型溞MAPK基因家族的表达分析[J]. 海洋科学前沿, 2023, 10(4): 306-318. https://doi.org/10.12677/AMS.2023.104031

1. 引言

纳米氧化铈(Nano cerium dioxide, nCeO2)是世界上产量最大的金属氧化物纳米颗粒之一,至2050年全球年产量可达1万吨 [1] 。它可作为抛光剂、光催化材料、燃料电池电解质和药物载体,广泛应用于工业、能源、医药等领域 [2] [3] 。nCeO2在生产和使用过程中,通过工业废水、垃圾渗漏等途径进入水环境中,污染了江、河、湖、海等自然水体。nCeO2颗粒通过水生生物的摄食或附着在水生生物的体表,逐渐渗透在水生生物体内,干扰水生生物的摄食、能量代谢等生理过程,对水生生物健康和水域生态系统平衡带来了潜在的危害 [4] [5] [6] 。5 mg/L的nCeO2可抑制月芽藻(Pseudokirchneriella subcapitata)的生长 [7] 。暴露于400 mg/L nCeO2就会导致斑马鱼(Danio rerio)胚胎畸形,畸形部位主要发生在尾部,畸形率和死亡率随药物浓度的增加而增加 [8] 。彗星试验显示nCeO2能诱导大型溞和摇蚊幼虫(Chironomus riparius) DNA损伤,具有遗传毒性 [9] 。近年来关于nCeO2等纳米金属颗粒对水生生物的急、慢性毒性、生殖毒性效应等的报道已有不少。

丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)是一种在无脊椎动物和脊椎动物中广泛存在,在进化过程中高度保守的丝氨酸/苏氨酸蛋白激酶 [10] 。MAPK基因家族成员有MAPK激酶激酶激酶(MAP kinase kinase kinase kinase, MKKKK, MAP4K)、MAPK激酶激酶(MAP kinase kinase kinase, MKKK, MAP3K)、MAPK激酶(MAP kinase kinase, MKK, MAP2K)和MAPK (MAP kinase)。在环境胁迫下,这些MAPK酶能依次激活,共同调节着细胞的生长、繁殖等多种生理过程,来应对环境胁迫 [11] [12] 。海鞘(Phallusia mammillata)胚胎在三丁锡暴露下,随着药物浓度的增高(0.5~10 mM),海鞘胚胎中的MAPK磷酸化水平显著降低,导致海鞘胚胎发育异常 [13] 。鲤鱼(Cyprinus carpio)在氯吡硫磷暴露下随着药物浓度的增高(1.16~111.6 μg/L),MAPKp38和ERK高表达,激活MAPK/NF-κB/TNF-α通路,诱发了炎症反应 [14] 。将紫贻贝(Mytilus galloprovincialis)血细胞短时间暴露在微量抗菌剂三氯生中,导致血细胞溶酶体膜被破坏,水解酶释放,最终细胞崩解、死亡,三氯生对血细胞的毒性效应与MAPK基因的调控作用相关 [15] 。在副溶血性弧菌感染的深海贻贝(Bathymodiolus azoricus)血细胞中发现MAPKp38基因高表达,参与了贻贝对抗细菌的免疫机制 [16] 。副溶血性弧菌感染的中华绒螯蟹(Eriocheir sinensis)血细胞中EsMAPKK基因的mRNA水平出现明显的高表达,提示MAPKK基因家族参与了中华绒螯蟹的抗菌免疫应答过程 [17] 。斑马鱼暴露于4 mg/L噻苯唑和0.5 mg/L代森锰锌下,均会诱导斑马鱼ERK、MAPKp38和Akt基因的磷酸化,影响斑马鱼PI3K/Akt和MAPK信号通路,导致斑马鱼体长发育不良,细胞内活性氧水平升高,大量细胞凋亡,造成严重的DNA损伤 [18] [19] [20] [21] 。

大型溞(Daphnia magna)是在淡水水域中常见的小型浮游动物,在全世界广泛分布,是淡水生态系统食物网中的关键环节 [22] 。由于其生长速度快、繁殖力强、饲养方便、易于操作,常被用作水生态环境监测的模式生物 [23] [24] [25] 。大型溞暴露于纳米氧化锌、纳米氧化钛、纳米氧化硅48 h后,和对照组相比,其蜕皮、能量代谢和DNA合成等相关基因的转录表达明显下调 [26] 。0.8 μg/L纳米银暴露24 h破坏大型溞的蛋白质代谢和信号转导途径 [27] 。0.06 mg/L纳米氧化锌48 h导致了大型溞几丁质酶基因表达下调,细胞Ca2+稳态破坏,消化酶的表达降低 [28] 。然而,对于nCeO2暴露下大型溞MAPK基因家族成员的生物学作用还未见报道。因此,本文利用BLAST比对、HMM模型等生物信息学方法分析大型溞MAPK基因家族成员的种类、理化性质和家族分类、进化与结构特点,通过实时荧光定量PCR扩增(q-PCR)技术分析nCeO2暴露下大型溞MAPK基因的表达模式,以期鉴定基因家族成员中参与nCeO2暴露下大型溞机体应激反应的关键基因,为进一步阐明nCeO2暴露对大型溞的毒性效应提供科学参考。

2. 材料与方法

2.1. 大型溞MAPK基因序列分析

从NCBI下载大型溞基因组数据(ASM2063170v1.1),进行Blast-search,获得可能的候选MAPK氨基酸序列,从Pfam (http://pfam.xfam.org/)中下载了MAPK结构域的HMM模型(PF00069、PF07714),利用此HMM模型对候选的MAPK进行识别,并通过SMART网站(http://smart.embl-heidelberg.de/)进行结构域分析,剔除不含有MAPK家族蛋白结构域的序列。通过ExPASy数据库(https://www.expasy.org/protparam)中的ProtParam工具对DmMAPK基因家族进行理化性质的分析。MEME5.5.4 (https://meme-suite.org/meme/tools/meme)用于分析MAPK蛋白质家族成员的保守基序,最大图案数设定为 10,其它参数为默认值,结合进化树,用TBtools进行基序结构的可视化。用MEGA7软件 [29] ,选择Alignment by ClustalW进行序列比对,使用邻接法(Neighbor-joining method)构建系统发生树,最后用Chiplot网站(https://www.chiplot.online)对建成的树进行修饰。

2.2. 实验动物和药物处理

大型溞来自大连海洋大学辽宁省水生生物学重点实验室。从克隆培养的大型溞中选取所生的第三窝健康新生溞,挑出用脱氯水在1 L烧杯中培养。

大型溞分为三组,一组为对照组,另两组为药物处理组。药物处理组大型溞分别暴露于50、150 mg/L的浓度nCeO2。每组设置3个重复,每个重复烧杯中放入100只大型溞。为了避免大型溞摄食影响实验结果,实验期间不投喂。24和48 h后将存活的大型溞分别放入1.5 ml离心管中,吸干水分,保存到碎冰中,用于提取样品总RNA。

2.3. RNA的提取及反转录

每个重复取45只活的大型溞立即在冰上用研钵在Trizol溶液(生工生物工程,上海)中匀浆,经过消化、离心、洗脱等操作之后,提取来自大型溞的总RNA,在1.2%琼脂糖凝胶上分析RNA的完整性。使用艾科瑞生物公司的Evo M-MLV RT Kit with gDNA Clean for qPCR对大型溞的总RNA进行反转录。

2.4. 实时荧光定量PCR测定

用NCBI-Primer设计大型溞MAPK基因家族成员序列的特异性引物,用于qPCR的引物序列如表1所示。引物由生工生物工程(上海)合成。在Applied Biosystems™ 7500仪器进行qPCR,反应条件:95℃ 30 s,95℃ 5 s 60℃ 30 s,40个循环。以Beta-actin作为内参基因。大型溞Beta-actin引物从文献中引用 [30] ,应用2–ΔΔct法计算MAPK基因的相对表达量。

Table 1. Primers for qPCR

表1. qPCR所用引物

2.5. 数据分析

使用Excel (T-test检验)分析对照组和nCeO2处理组大型溞MAPK基因家族的表达差异,所有实验采用3个生物重复,P < 0.05为差异有统计学意义,P < 0.01为差异极其显著。

3. 结果

3.1. 大型溞MAPK基因家族理化性质分析

笔者通过BLAST比对进行大型溞的全基因组筛选,结合HMM模型和SMART分析等生信工具鉴定出大型溞的14个MAPK基因家族成员。对这14个基因的命名,我们采用了“物种名首字母缩写 + 基因名 + 数字”的方式,即大型溞拉丁语物种名Daphnia magna两个单词的首字母“Dm”,接着是MAPK基因成员的名字,其后是NCBI数据库中代表不同MAPK基因家族亚型成员的数字,例如DmMAPK1、DmMAP2K1。大型溞14个MAPK基因家族成员蛋白质的理化性质特征见表2。这14个基因分别位于大型溞的1~7和10号等8条染色体上,其中第7号染色体上分布的MAPK基因家族成员最多,有DmMAP2K3、DmMAP2K4和DmMAP2K7等3个基因。MAPK基因家族成员蛋白质序列长度范围为361~1546 aa。其中DmMAPK-p38b被鉴定为最小的MAPK蛋白,只有361个氨基酸,而最大的MAPK蛋白是DmMAP3K4,有1546个氨基酸。大型溞MAPK基因家族成员蛋白质分子量变化较大,范围为38.93~177.02 kDa,其等电点的范围为5.3~9.51,蛋白质分子的不稳定系数范围为34.50~74.07,DmMAPK2、DmMAPK4、DmMAP2K1等11个为不稳定蛋白,DmMAPK-p38b、DmMAPK1、DmMAP2K3为稳定蛋白。

Table 2. Physicochemical characterization of members of the MAPK gene family in Daphnia magna

表2. 大型溞MAPK基因家族成员的理化特征

3.2. 大型溞MAPK基因家族成员结构与进化分析

笔者使用SMART程序分析每个MAPK蛋白的结构域(图1),发现大型溞MAPK基因家族成员DmMAPK1、DmMAPK2等12个成员都具有S_TKc结构域,DmMAPK4有STYKc和CASC结构域,DmMAP3K11有SH3和TyrKc结构域。笔者利用MEME比较大型溞14个MAPK基因家族成员蛋白质序列中存在的保守基序,从所有MAPK基因家族成员中总共鉴定出十个不同的基序,命名为motif 1~motif 10 (图2)。发现14个MAPK基因家族成员,含有基序最多的有10个,最少的含有4个基序。motif 1 (HRDLKPSNILLNERGEVKJCD)、3 (YAGTRAYMAPEVI)、6 (DLVEKCLEKBPKKRPTAEQLLEHPFL)和7 (IGEIARQILRGLKYLHSNGII)是大型溞14个MPAK蛋白共有的保守基序,motif 1、3、6和7是MAPK家族特征S_TKc结构域。14个MAPK基因家族成员中有13个成员含有motif 2 (DVWSLGITLVELATGKPPYPDL)和5 (GSGAYGVVYKARHNKTGTIMAVKKI),而这两个基序在DmMAPK4蛋白中不存在。motif 9 (EQKRLLMDLDVVMRSNDCPY)只存在于MAP2K3、MAP2K4、MAP2K7这三个蛋白中。MAPKp38b、MAPK1、MAPK2、MAPK4蛋白中不含有motif 4 (IVAFYGALLQEGDLWICMEYM)。

我们利用MEGA 7软件,使用CLUSTAL W和邻接法,构建了来自人类(Homo sapiens)、小鼠(Mus musculus)、斑马鱼(Danio rerio)、果蝇(Drosophila melanogaster)、中华对虾(Penaeus chinensis)、秀丽隐杆线虫(Caenorhabditis elegans)、蚤状溞(Daphnia pulex)和大型溞的MAPK基因家族成员的系统发育树。如图3所示,大型溞MAPK基因家族分为MAP4K、MAP3K、MAP2K和MAPK这4个亚家族。其中MAPK亚族共有4个成员,MAP2K亚族有4个成员,MAP3K亚族共有5个成员,MAP4K亚族有1个成员。由系统发生树看出,MAPK蛋白分成三个大的分支。第一个分支由7个物种的MAPK亚族(除DmelMAPK4)和大部分的MAP3K亚族的组成,第二个分支由6个物种中MAP2K亚族、MAP4K亚族、部分的MAP3K亚族(DmMAP3K4、HmMAP3K1、MmMAP3K1)和一个DmelMAPK4构成,第三个分支由大型溞的DmMAP3K-13-A、DmMAP3K7和秀丽隐杆线虫的CeMAP3K-sdlk-1、CeMAP3K-mom-4组成。

3.3. nCeO2暴露对大型溞MAPK基因家族成员的表达的影响

为了研究nCeO2 暴露下大型溞MAPK基因家族成员的表达模式,我们分析了不同浓度、不同时间nCeO2暴露对14个DmMAPK基因转录水平的影响(图4)。nCeO2暴露24 h,与对照组相比,大型溞药物处理组各个MAPK基因的表达显著下降(P < 0.01)。随着暴露时间的延长,48 h后 50和150 mg/LnCeO2

Figure 1. Structural domains of DmMAPK gene family members

图1. DmMAPK基因家族成员的结构域

(a)(b)

Figure 2. Daphnia magna of MAPK gene family motif analysis. (a) MAPK gene motif sequence, (b) MAPK gene motif structure)

图2. 大型溞MAPK基因家族基序分析。(a) MAPK基因motif序列,(b) MAPK基因motif结构

Figure 3. Phylogenetic tree of the MAPK gene family

图3. MAPK基因家族系统发育树

Figure 4. Heat map of the expression of MAPK genes in Daphnia magna exposed to nCeO2

图4. nCeO2暴露下大型溞MAPK基因家族成员表达热图

暴露组大型溞DmMAPK-p38b、DmMAPK4、DmMAP2K4、DmMAP3K4、DmMAP3K7、DmMAP3K11、DmMAP4K5等7个基因的表达明显上调(P < 0.01),DmMAPK2、DmMAP2K3、DmMAP3K13-A的表达显著下降(P < 0.001),DmMAP2K7的表达差异不显著。

4. 讨论

水生动物在生长发育过程中不可避免地受到外界环境胁迫的影响。由于nCeO2在水环境的持续输入和具有生物富集性,nCeO2的水生态毒理效应已成为国内外关注的热点。暴露在较高浓度nCeO2 (1000 mg/L)下,14种纤毛原生生物的死亡率随浓度和时间的增加而增加 [31] [32] 。在nCeO2暴露下,斜生栅藻(Scenedesmus obliquus)的光合作用和能量代谢受到抑制 [32] 。在nCeO2暴露下,淡水涡虫(Dugesia japonic)的再生过程被抑制,细胞稳态和抗氧化防御系统被破坏,DNA损伤升高 [33] 。大型溞对水环境中的污染物敏感性高,常用来评估淡水生态系统中存在的污染物的毒性效应,但是在nCeO2暴露下大型溞MAPK基因的作用机制还不清楚。

MAPK基因家族是真核生物中广泛存在且高度保守的信号转导途径,各个MAPK基因家族成员广泛参与细胞内代谢、免疫反应,以及生物体对多种生物与非生物胁迫应答过程 [34] [35] 。PmMAPKK基因在斑节对虾(Penaeus monodon)的卵巢中表达量最高,这表明PmMAPKK基因在生殖细胞的发育和成熟中起着非常重要的作用,PmMAPKK在肝胰腺和鱼鳃中的高表达,表明它同时具有免疫和抗应激功能,将PmMAPKK基因敲除后,斑节对虾在低盐环境下的死亡率增加,说明PmMAPKK基因参与了斑节对虾对非生物胁迫应答的过程 [36] [37] 。在高温、缺氧条件下,青蛤(Cyclina sinensis)的MmMAPKK基因的表达与对照组相比显著上调,证实了MmMAPKK基因参与了生物对非生物胁迫应答的过程 [38] 。为了探讨MAPK在nCeO2暴露下对大型溞的毒性效应中可能具有的生物学作用,笔者通过生物信息学手段鉴定大型溞的MAPK基因家族成员,并检测了nCeO2暴露对各个基因成员转录表达的影响。我们使用BLAST比对、HMM模型结合SMART等方法鉴定出了14个大型溞MAPK基因家族成员。这与在其他节肢动物斑节对虾、果蝇中发现的MAPK基因家族成员基本一致,但在数量上比哺乳动物少 [11] [39] [40] 。通过对大型溞14个MAPK基因的理化性质和结构域进行分析(表2图1)发现这14个基因分布位于大型溞的1~7和10号等8条染色体上,MAPK家族蛋白质序列的长度范围为361~1546 aa,分子量大小在38.93~177.02 kDa之间,其等电点的范围为5.3~9.51,蛋白质分子的不稳定系数范围为34.50~74.07。DmMAPK2、DmMAPK4、DmMAP2K1等11个为不稳定蛋白,与MAPK蛋白作为细胞信号级联反应的激酶作用一致。大型溞MAPK基因家族成员DmMAPK1、DmMAPK2等12个成员都具有S_TKc结构域,即丝氨酸/苏氨酸蛋白激酶。丝氨酸/苏氨酸蛋白激酶在多种细胞过程中发挥作用,包括分裂、增殖、凋亡和分化。磷酸化通常通过改变酶活性、细胞位置或与其他蛋白质的结合导致靶蛋白的功能改变 [41] [42] 。motif1、3、6和7是大型溞14个MPAK蛋白共有的保守基序(图2)。通过分析基序在MAPK基因序列中的位置,我们发现这4个基序位于S_TKc结构域中,推测这些位点和激酶的生物学功能密切相关,因此在进化上具有保守性。我们构建了大型溞、蚤状溞等7个物种的MAPK基因家族成员的系统发育树(图3),系统发生分析显示,大型溞的14个MAPK基因分别属于4个亚家族,而且发现脊椎动物到无脊椎动物,MAPK基因在进化过程中是较为保守的。

为了检测MAPK是否参与大型溞对nCeO2胁迫的分子响应,我们将大型溞暴露于50 mg/L和150 mg/L的nCeO2溶液24、48 h后,利用qPCR技术分析nCeO2暴露下大型溞MAPK基因mRNA的表达模式(图4),发现48 h后大多数MAPK基因受到nCeO2的诱导,表达水平较对照组显著上调,其中DmMAPK-p38b、DmMAPK4、DmMAP2K4、DmMAP3K4、DmMAP3K7、DmMAP3K11和DmMAP4K5的表达尤为显著。预示这些基因与大型溞对环境胁迫的应答相关。DmMAP2K7的表达差异不显著,在这个过程不起主要作用。DmMAPK2、DmMAP2K3和DmMAP3K13-A基因在在整个实验过程中的表达水平较对照组显著下调。对紫贻贝进行各种重金属诱导,发现MAPKp38信号传导通路能引发组织特异的促凋亡和抗凋亡活动 [43] 。温度高于24℃后,紫贻贝后闭壳肌和套膜中磷酸化的MAPKp38和MAPK-JNK分子显著增加,MAPKp38和MAPK-JNK信号途径诱导了热激蛋白的表达 [44] 。随着多氯联苯同源物P153暴露时间的增加,紫贻贝体内MAPKp38和MAPK-JNK磷酸化水平增高,激活ERK,表明MAPK信号途径参与了软体动物的免疫反应 [45] [46] 。经虹膜病毒处理石斑鱼(Epinephelus coioides),MAPK-JNK信号通路相关基因的表达上调,说明MAPK-JNK信号通路在石斑鱼由病毒引起免疫反应中具有重要的调控作用 [47] 。重金属铅暴露下,鲤鱼通过激活MAPK调控通路,诱导细胞内活性氧升高,并抑制超氧化物歧化酶等抗氧化酶的活性,最终引发鲤鱼头肾炎症反应 [48] 。岸溪摇蚊(Chironomus riparius)暴露于重金属镉,通过CrMAPKp38基因表达的上调,激发了MAPKp38信号转导途径,介导机体氧化应激反应,显示了CrMAPKp38基因在重金属胁迫应答中的作用 [49] 。长期暴露于三氯生可显著上调斑马鱼肝脏中MAPK和p53基因的表达,激活MAPK/p53凋亡信号通路 [50] 。暴露聚苯乙烯纳米颗粒下,斑马鱼发育过程中激活MAPKp38信号通路,导致氧化损伤和细胞凋亡 [51] 。大型溞MAPK基因家族成员在进化过程上高度保守,由此我们推测大型溞MAPK可通过参与细胞内的一些生命过程的调控,如氧化还原和细胞凋亡等过程,与大型溞对纳米金属的胁迫应答相关。

5. 结论

综上,我们从大型溞全基因组鉴定出14个MAPK基因家族成员,分别属于MAP4K、MAP3K、MAP2K和MAPK这4个亚家族,分布于大型溞的1~7和10号等8条染色体上。DmMAPK1、DmMAPK2等12个成员都具有S_TKc结构域,即丝氨酸/苏氨酸蛋白激酶。该激酶在多种细胞过程中发挥作用,包括分裂、增殖、凋亡和分化。所有的DmMAPK基因家族成员都具有motif 1、3、6和7这4个保守基序。nCeO2暴露引起大型溞MAPK基因家族的DmMAPK-p38b、DmMAPK4、DmMAP2K4、DmMAP3K4、DmMAP3K7、DmMAP3K11、DmMAP4K5等7个基因的表达显著上调,激活MAPK信号通路,可能使MAPK介导的大型溞生命活动出现异常。这些结果为进一步探究大型溞MAPK基因在应对环境胁迫的功能奠定了基础。

基金项目

本论文由国家自然科学基金(42077226)和辽宁省教育厅项目(LJKMZ20221102)资助。

NOTES

*通讯作者。

参考文献

[1] Future Markets, Inc. (2012) The Global Market for Nanomaterials 2002-2016: Production Volumes, Revenues and End User Market Demand.
[2] Golbamaki, N., Rasulev, B., Cassano, A., et al. (2015) Genotoxicity of Metal Oxide Nano-materials: Review of Recent Data and Discussion of Possible Mechanisms. Nanoscale, 7, 2154-2198.
https://doi.org/10.1039/C4NR06670G
[3] 孙晓红. 纳米及介孔金属氧化物材料新合成方法探索研究[D]: [博士学位论文]. 天津: 南开大学, 2010.
[4] Magara, G., Elia, A.C., Dörr, A.J.M., et al. (2021) Metal Load and Oxida-tive Stress Driven by Organotin Compounds on Rainbow Trout. Environmental Science and Pollution Research, 28, 35012-35022.
https://doi.org/10.1007/s11356-021-12984-w
[5] Wang, Y. and Nowack, B. (2018) Dynamic Probabilistic Mate-rial Flow Analysis of Nano-SiO2, Nano Iron Oxides, Nano-CeO2, Nano-Al2O3, and Quantum Dots in Seven European Regions. Environmental Pollution, 235, 589-601.
https://doi.org/10.1016/j.envpol.2018.01.004
[6] Dai, Y., Sun, C., Hou, R., et al. (2023) Transfer of CeO2 Nano-particles between Freshwater Omnivorous Organisms: Effect of Feces and Necrophagy. Journal of Hazardous Materials, 451, Article ID: 131137.
https://doi.org/10.1016/j.jhazmat.2023.131137
[7] Cassee, F.R., Van Balen, E.C., Singh, C., et al. (2011) Behav-iour of Ceria Nanoparticles in Standardized Test Media—Influence on the Results of Ecotoxicological Tests. Journal of Physics: Conference Series, 304, Article ID: 012058.
https://doi.org/10.1088/1742-6596/304/1/012058
[8] 陈昱, 樊燕, 舒凡, 等. 纳米氧化铈对斑马鱼胚胎早期发育毒性[J]. 中国职业医学, 2020, 47(1): 48-52.
[9] Lee, S.W., Kim, S.M. and Choi, J. (2009) Genotoxicity and Eco-toxicity Assays Using the Freshwater Crustacean Daphnia Magna and the Larva of the Aquatic Midge Chironomus ri-parius to Screen the Ecological Risks of Nanoparticle Exposure. Environmental Toxicology and Pharmacology, 28, 86-91.
https://doi.org/10.1016/j.etap.2009.03.001
[10] 姜勇, 罗深秋. 细胞信号转导的分子基础与功能调控[M]. 北京: 科学出版社, 2006.
[11] Kyriakis, J.M. and Avruch, J. (2001) Mammalian Mitogen-Activated Protein Ki-nase Signal Transduction Pathways Activated by Stress and Inflammation. Physiological Reviews, 81, 807-869.
https://doi.org/10.1152/physrev.2001.81.2.807
[12] Lee, Y., Kim, Y.J., Kim, M.H., et al. (2016) MAPK Cascades in Guard Cell Signal Transduction. Frontiers in Plant Science, 7, Article No. 80.
https://doi.org/10.3389/fpls.2016.00080
[13] Damiani, F., Gianguzza, M. and Dolcemascolo, G. (2009) Effects of Tributyltin Chloride in Ascidian Embryos: Modulation of Kinase-Mediated Signalling Pathways. Invertebrate Survival Journal, 6, S87-S94.
[14] Chen, J., Shao, B., Wang, J., et al. (2021) Chlorpyrifos Caused Necroptosis via MAPK/NF-κB/TNF-α Pathway in Common Carp (Cyprinus carpio L.) Gills. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 249, Article ID: 109126.
https://doi.org/10.1016/j.cbpc.2021.109126
[15] Canesi, L., Ciacci, C., Lorusso, L.C., et al. (2007) Effects of Triclosan on Mytilus galloprovincialis Hemocyte Function and Digestive Gland Enzyme Activities: Possible Modes of Action on Non-Target Organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145, 464-472.
https://doi.org/10.1016/j.cbpc.2007.02.002
[16] Bettencourt, R., Dando, P., Collins, P., et al. (2009) Innate Immun-ity in the Deep Sea Hydrothermal Vent Mussel Bathymodiolus azoricus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 152, 278-289.
https://doi.org/10.1016/j.cbpa.2008.10.022
[17] Zhang, X., Shen, G., Guo, Y., Zhang, X., et al. (2023) Genome-Wide Identification and Analysis of the MAPKK Gene Family in Chinese Mitten Crab (Eriocheir sinensis) and Its Response to Bacterial Challenge. Fish & Shellfish Immunology, 143, Article ID: 109132.
https://doi.org/10.1016/j.fsi.2023.109132
[18] Martins, I.K., Pereira, L.G., Nunes, M.E.M., et al. (2023) Exposure to Mancozeb Results in Increased MAPK Phosphorylation and Locomotor Deficits in Zebrafish Larvae. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 270, Article ID: 109659.
https://doi.org/10.1016/j.cbpc.2023.109659
[19] Mohammadi-Sardoo, M., Mandegary, A., Nematollahi-Mahani, S.N., et al. (2021) Cytotoxicity of Mancozeb on Sertoli-Germ Cell Co-Culture System: Role of MAPK Signaling Path-way. Toxicology and Industrial Health, 37, 674-684.
https://doi.org/10.1177/07482337211044028
[20] Park, J., An, G., Park, H., et al. (2023) Developmental Defects Induced by Thiabendazole Are Mediated via Apoptosis, Oxidative Stress and Alteration in PI3K/Akt and MAPK Path-ways in Zebrafish. Environment International, 176, Article ID: 107973.
https://doi.org/10.1016/j.envint.2023.107973
[21] Park, J., Hong, T., An, G., et al. (2022) Triadimenol Promotes the Production of Reactive Oxygen Species and Apoptosis with Cardiotoxicity and Developmental Abnormalities in Zebrafish. Science of the Total Environment, 862, Article ID: 160761.
https://doi.org/10.1016/j.scitotenv.2022.160761
[22] Forró, L., Korovchinsky, N.M., Kotov, A.A., et al. (2008) Global Diversity of Cladocerans (Cladocera; Crustacea) in Freshwater. Hydrobiologia, 595, 177-184.
https://doi.org/10.1007/s10750-007-9013-5
[23] Galdiero, E., Falanga, A., Siciliano, A., et al. (2017) Daphnia Magna and Xenopus laevis as in Vivo Models to Probe Toxicity and Uptake of Quantum Dots Functionalized with gH625. International Journal of Nanomedicine, 12, 2717-2731.
https://doi.org/10.2147/IJN.S127226
[24] Martins, J., Oliva Teles, L. and Vasconcelos, V. (2007) Assays with Daphnia Magna and Danio rerio as Alert Systems in Aquatic Toxicology. Environment International, 33, 414-425.
https://doi.org/10.1016/j.envint.2006.12.006
[25] Byeon, E., Kim, M.S., Kim, D.H., et al. (2022) The Freshwater Water Flea Daphnia Magna NIES Strain Genome as a Resource for CRISPR/Cas9 Gene Targeting: The Glutathione S-Transferase Omega 2 Gene. Aquatic Toxicology, 42, Article ID: 106021.
https//doi.org/10.1016/j.aquatox.2021.106021
[26] Wang, W., Yang, Y., Yang, L., Luan, T., et al. (2021) Effects of Undissociated SiO2 and TiO2 Nano-Particles on Molting of Daphnia pulex: Comparing with Dissociated ZnO Nano Particles. Ecotoxicology and Environmental Safety, 222, Article ID: 112491.
https://doi.org/10.1016/j.ecoenv.2021.112491
[27] Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., et al. (2013) Toxicogenomic Responses of Nanotoxicity in Daphnia magna Exposed to Silver Nitrate and Coated Silver Nanoparticles. Environmental Science & Technology, 46, 6288-6296.
https://doi.org/10.1021/es3001618
[28] Lin, L., Xu, M., Mu, H., et al. (2019) Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to Daphnia pulex (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. Environmental Science and Technology, 53, 5436-5444.
https://doi.org/10.1021/acs.est.9b00251
[29] Sudhir, K., Glen, S. and Koichiro, T. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[30] Lyu, K., Zhu, X., Wang, Q., et al. (2013) Copper/Zinc Superoxide Dismutase from the Cladoceran Daphnia magna: Molecular Cloning and Expression in Response to Different Acute En-vironmental Stressors. Environmental Science & Technology, 47, 8887-8893.
https://doi.org/10.1021/es4015212
[31] Zhang, W., Pu, Z., Du, S., et al. (2016) Fate of Engineered Cerium Oxide Nanoparticles in an Aquatic Environment and Their Toxicity toward 14 Ciliated Protist Species. Environmental Pollution, 212, 584-591.
https://doi.org/10.1016/j.envpol.2016.03.011
[32] Xie, C., Li, X., Hei, L., Chen, Y., et al. (2023) Toxicity of Ceria Nanoparticles to the Regeneration of Freshwater Planarian Dugesia japonica: The Role of Biotransformation. Science of the Total Environment, 857, Article ID: 159590.
https://doi.org/10.1016/j.scitotenv.2022.159590
[33] Xiong, J.Q., Ru, S., Zhang, Q., et al. (2020) Insights into the Effect of Cerium Oxide Nanoparticle on Microalgal Degradation of Sulfonamides. Bioresource Technology, 309, Article ID: 123452.
https://doi.org/10.1016/j.biortech.2020.123452
[34] 郝丽芬, 燕孟娇, 房永雨, 等. 黑胫病菌侵染过程中油菜响应基因的表达分析[J]. 西北植物学报, 2021, 41(2): 197-211.
[35] Wang, X., Zhang, C., Zou, N., et al. (2022) Lipocalin-2 Silencing Suppresses Inflammation and Oxidative Stress of Acute Respiratory Distress Syndrome by Fer-roptosis via Inhibition of MAPK/ERK Pathway in Neonatal Mice. Bioengineered, 13, 508-520.
https://doi.org/10.1080/21655979.2021.2009970
[36] Gooding, E.L., et al. (2019) Black Gill Increases the Suscep-tibility of White Shrimp, Penaeus setiferus (Linnaeus, 1767), to Common Estuarine Predators. Journal of Experimental Marine Biology and Ecology, 524, Article ID: 151284.
https://doi.org/10.1016/j.jembe.2019.151284
[37] Fan, H.D., et al. (2021) Isolation and Characterization of a MAPKK Gene from Penaeus monodon in Response to Bacterial Infection and Low-Salinity Challenge. Aquaculture Re-ports, 20, Article ID: 100671.
https://doi.org/10.1016/j.aqrep.2021.100671
[38] Hu, Z., Song, H., Feng, J., et al. (2022) Genome-Wide Analysis of the Hard Clam Mitogen-Activated Protein Kinase Kinase Gene Family and Their Transcriptional Profiles under Abiotic Stress. Marine Environmental Research, 176, Article ID: 105606.
https://doi.org/10.1016/j.marenvres.2022.105606
[39] Shilo, B.Z. (2014) The Regulation and Functions of MAPK Pathways in Drosophila. Methods, 68, 151-159.
https://doi.org/10.1016/j.ymeth.2014.01.020
[40] 范红第. 斑节对虾MAPK信号通路相关基因的克隆及其在盐度胁迫中的功能研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2020.
[41] 马阿妮, 王艺磊, 张子平, 等. MAPK信号途径及其在水生无脊椎动物的研究进展[J]. 生命科学, 2010, 22(10): 978-984.
[42] Chang, L. and Ka-rin, M. (2023) Mammalian MAP Kinase Signalling Cascades. Nature, 410, 37-40.
https://doi.org/10.1038/35065000
[43] Anestis, A., Lazou, A., Hans, O., Pörtner, et al. (2007) Behavioral, Meta-bolic, and Molecular Stress Responses of Marine Bivalve Mytilus galloprovincialis during Long-Term Acclimation at In-creasing Ambient Temperature. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiol-ogy, 293, R911-R921.
https://doi.org/10.1152/ajpregu.00124.2007
[44] Kefaloyianni, E., Gourgou, E., Ferle, V., et al. (2005) Acute Thermal Stress and Various Heavy Metals Induce Tissue-Specific Pro- or Anti-Apoptotic Events via the p38-MAPK Signal Transduction Pathway in Mytilus galloprovincialis (Lam). Journal of Experimental Biology, 208, 4427-4436.
https://doi.org/10.1242/jeb.01924
[45] Ciacci, C., Canesi, L., Fantinati, A., et al. (2008) Immunotoxicity of Carbon Black Nanoparticles to Blue Mussel Hemocytes. Environment International, 34, 1114-1119.
https://doi.org/10.1016/j.envint.2008.04.002
[46] Canesi, L., Ciacci, C., Betti, M., et al. (2003) Effects of PCB Congeners on the Immune Function of Mytilus Hemocytes: Alterations of Tyrosine Kinase-Mediated Cell Signaling. Aquatic Toxicology, 63, 293-306.
https://doi.org/10.1016/S0166-445X(02)00186-8
[47] Wei, S., Huang, Y., Huang, X., et al. (2015) Characteriza-tion of c-Jun from Orange-Spotted Grouper, Epinephelus coioides Involved in SGIV Infection. Fish and Shellfish Im-munology, 43, 230-240.
https://doi.org/10.1016/j.fsi.2014.12.033
[48] Jing, H., Zhang, Q., Li, S., Gao, X.J., et al. (2020) Pb Exposure Triggers MAPK-Dependent Inflammation by Activating Oxidative Stress and miRNA-155 Expression in Carp Head Kidney. Fish and Shellfish Immunology, 106, 219-227.
https://doi.org/10.1016/j.fsi.2020.08.015
[49] Park, S.Y. and Choi, J. (2017) Molecular Characterization and Ex-pression Analysis of P38 MAPK Gene and Protein in Aquatic Midge, Chironomus riparius (Diptera: Chironomidae), Exposed to Environmental Contaminants. Archives of Environmental Contamination and Toxicology, 72, 428-438.
https://doi.org/10.1007/s00244-017-0366-0
[50] Liu, M., Ai, W., Sun, L., et al. (2019) Triclosan-Induced Liver Injury in Zebrafish (Danio rerio) via Regulating MAPK/p53 Signaling Pathway. Comparative Biochemistry and Physi-ology Part C: Pharmacology, Toxicology, 222, 108-117.
https://doi.org/10.1016/j.cbpc.2019.04.016
[51] Hu, Q., Wang, H., He, C., et al. (2021) Polystyrene Nanoparticles Trigger the Activation of p38 MAPK and Apoptosis via Inducing Oxidative Stress in Zebrafish and Macrophage Cells. Environmental Pollution, 269, Article ID: 116075.
https://doi.org/10.1016/j.envpol.2020.116075