慢性髓细胞白血病对伊马替尼产生耐药性的机制
Imatinib Resistance Mechanism on Chronic Myeloid Leukemia
摘要:  慢性髓细胞白血病(Chronic Myeloid Leukemia, CML)是克隆性造血细胞骨髓增殖性疾病。这种疾病是由特殊染色体易位引起的,即Ph染色体。Ph染色体由22号染色体的长臂和9号染色体的长臂断裂融合而成,大约在95%的CML患者、5%的儿童急性淋巴细胞白血病(Acute Lymphoblastic Leukemia, ALL)、15%~30%的成人ALL、2%新诊断的AML(Acute Myeloid Leukemia)中能检测到Ph。由该基因编码后翻译出具有持续活化的酪氨酸激酶活性(PTK)的BCR-ABL1融合蛋白,能够活化下游多条信号通路,抑制细胞凋亡,刺激细胞无限增殖,增强细胞的侵袭力,诱导对细胞毒药物和辐射治疗的抵抗。伊马替尼(Imatinib, IM)是人工设计的一种酪氨酸激酶抑制剂(Tyrosine kinase inhibitor, TKI),作为一种靶向药物自2001年FDA批准上市以来,对治疗CML具有显著疗效。伊马替尼的作用是结合ABL1激酶催化结构域,使该结构域的构象处于非活动性的状态,不能再与ATP结合,从而抑制了白血病细胞的生长活性。不幸的是,许多患者服用不久后会出现耐药现象,已有相关报道称在接受伊马替尼治疗5年后的CML患者中,有24%出现继发耐药。80%的耐药原因是由于BCR-ABL1激酶区的点突变(KDM, Kinase Domain Mutation),造成伊马替尼不能与其结合。
Abstract: Chronic myeloid leukemia is a clonal myeloproliferative disease of hematopoietic cells, induced by specific chromosome translocation. The Ph chromosome is a shortened chromosome 22 resulting from a reciprocal translocation, t(9; 22) - (q34; q11), between the long arms of chromosomes 9 and 22. It is the hallmark of CML and is found in up to 95 percent of patients. It is also found in 5 percent of children and in 15 to 30 percent of adults with acute lymphoid leukemia and in 2 percent of patients with newly diagnosed acute myeloblastic leukemia. This translocation generates a fusion protein, BCR-ABL which has constitutively tyrosine kinases activity. Leading to activation of downstream signal transduction pathways in cells responsible for protection apoptosis, stimulation proliferation, enhance the invasion abil- ity and induction of resistance to genotoxic drugs and radiation therapy. Imatinib is an artificial design targeted drug of tyrosine kinase inhibitor. Since it comes to the market at 2001 authorized by FDA, it gets a significant progress in the treatment of CML. The role of imatinib is bind the kinase catalytic domain of ABL1, then the non-activity domain can not bind the ATP, inhibiting the activity of the proliferate of CML cells. Unfortunately many patients get efficacy shortly before the emergence of drug resistance. It have been reported that CML patients get 5 years treatment by Imatinib. 24% have secondary resistance, 80% of drug-resistant is the BCR-ABL1 kinase domain mutation, resulting in Imatinib can not bind the key domain.
文章引用:夏君燕, 朱平. 慢性髓细胞白血病对伊马替尼产生耐药性的机制[J]. 世界肿瘤研究, 2012, 2(3): 15-19. http://dx.doi.org/10.12677/WJCR.2012.23003

参考文献

[1] C. B. Lozzio, B. B. Lozzio. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood, 1975, 45(3): 3321-3334.
[2] B. J. Druker. STI571 (Gleevec (TM)) as a paradigm for cancer therapy. Trends in Molecular Medicine, 2002, 8: S14-S18.
[3] S. G. O’Brien, F. Guilhot, R. A. Larson, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. The New England Journal of Medicine, 2003, 348(11): 994-1004.
[4] T. P. Hughes, J. Kaeda, S. Branford, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytara- bine in newly diagnosed chronic myeloid leukemia. The New England Journal of Medicine, 2003, 349(15): 1421-1432.
[5] M. E. Gorre, M. Mohammed, K. Ellwood, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science, 2001, 293(5531): 876-880.
[6] S. Soverini, A. Gnani, S. Colarossi, et al. Abl kinase domain mutations are infrequent in early-chronic phase chronic myeloid leukemia patients resistant to imatinib [abstract]. Haematologica 2008, 93(Suppl. 1): Abstract 107.
[7] S. Soverini, S. Colarossi, A. Gnani, et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: By the GIMEMA working party on chronic myeloid leukemia. Clinical Cancer Research, 2006, 12(24): 7374-7379.
[8] E. Jabbour, H. Kantarjian, D. Jones, et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia, 2006, 20(10): 1767-1773.
[9] M. C. Müller, N. Gattermann, T. Lahaye, M. W. Deininger, A. Berndt, S. Fruehauf, et al. Dynamics of BCR-ABL mRNA ex- pression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia, 2003, 17: 2392-2400.
[10] A. Hochhaus. Cytogenetic and molecular mechanisms of resistance to imatinib. Seminars in Hematology, 2003, 40(2): 69-79.
[11] C. B. Gambacorti-Passerini, R. H. Gunby, R. Piazza, A. Galietta, R. Rostagno and L. Scapozza. Molecular mechanisms of resis- tance to imatinib in Philadelphia-chromosome-positive leukae- mias. The Lancet Oncology, 2003, 4: 75-85.
[12] S. Chu, H. Xu, N. P. Shah, et al. Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood, 2005, 105(5): 2093-2098.
[13] L. Foroni, G. Wilson, G. Gerrard, et al. Guidelines for the meas- urement of BCR-ABL1 transcripts in chronic myeloid leukae- mia. British Journal of Haematology, 2011, 153(2): 179-190.
[14] M. Talpaz, R. T. Silver, B. J. Druker, J. M. Goldman, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: Results of a phase 2 study. Blood, 2002, 99(6): 1928-1937.
[15] S. Branford, Z. Rudzki, S. Walsh, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and muta-tions in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood, 2003, 102: 276-283.
[16] S. Corm, F. Nicollini, D. Borie, et al. Mutation status of imatinib mesylate-resistant CML patients and clinical outcomes: A French multicenter retrospective study for the fiLMC group. Blood, 2004, 104: 82a.
[17] E. Jabbour, H. Kantarjian, D. Jones, et al. Long-term incidence and outcome of BCR-ABL mutations in patients (pts) with chronic myeloid leukemia (CML) treated with imatinib mesylate: P-loop mutations are not associated with worse outcome. Blood, 2004, 104: 288a.
[18] S. Redaelli, R. Piazza, R. Rostagno, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. Journal of Clinical Oncology, 2009, 27(3): 469-471.
[19] S. Branford, Z. Rudzki, I. Parkinson, et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood, 2004, 104(9): 2926-2932.
[20] F. X. Mahon, M. W. Deininger, B. Schultheis, J. Chabrol, J. Reiffers, J. M. Goldman, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: Diverse mechanisms of resis- tance. Blood, 2000, 96(3): 1070-1079.
[21] C. B. Gambacorti-Passerini, R. H. Gunby, R. Piazza, A. Galietta, R. Rostagno and L. Scapozza. Molecular mechanisms of resis- tance to imatinib in Philadel-phia-chromosome-positive leuke- mias. The Lancet Oncology, 2003, 4(2): 75-85.
[22] A. Sirulink, R. T. Silver and V. Najfeld. Marked ploidy and BCR-ABL gene amplification in vivo in a patient treated with STI571. Leukemia, 2001, 15(11): 1795-1797.
[23] L. J. Campbell, C. Patsouris, K. C. Rayeroux, K. Somana, E. H. Januszewics and J. Szer. BCR-ABL amplification in chronic myelocytic leukemia blastic crisis following imatinib mesylate administration Cancer Genet. Cytogenetics, 2002, 139(1): 30-33.
[24] F. Morel, M. J. Le Bris, A. Herry, G. La Calvez, V. Marion, J. F. Abgrall, et al. Double minutes containing amplified bcr-abl fu- sion gene in a case of chronic myeloid leukemia treated by imatinib. European Journal of Hematology, 2003, 70(4): 235-239.
[25] C. Gambacorti-Passerini, R. Barni, P. le Coutre, M. Zucchetti, G. Cabrita, L. Cleris, et al. Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL (+) leukemic cells to the abl inhibitor STI571J. National Cancer Institute, 2000, 92(20): 1641-1650.
[26] C. Gambacorti-Passerini, P. le Coutre, M. Zucchetti and M. D’Incalci. Binding of imatinib by α1-acid glycoprotein. Blood, 2002, 100(1): 367-368.
[27] P. Marbach, M. Lemaire, M. Hayes and W. F. Elmquist. Distribu- tion of STI-571 to the brain is limited by P-glycoprotein-medi- ated efflux. Journal of Pharmacology and Experimental Thera- peutics, 2003, 304(3): 1085-1092.
[28] J. Larghero, T. Leguay, S. Mourah, et al. Relationship between elevated levels of the alpha 1 acid glycoprotein in chronic mye- logenous leukemia in blast crisis and pharmacological resistance to imatinib (Gleevec) in vitro and in vivo. Biochemical Pharma- cology, 2003, 66(10): 1907-1913.
[29] P. le Coutre, K. A. Kreuzer and I. K. Na, et al. Determination of alpha-1 acid glycoprotein in patients with Ph+ chronic myeloid leukemia during the first 13 weeks of therapy with STI571. Blood Cells, Molecular and Diseases, 2002, 28(1): 75-85.
[30] T. Hegedus, L. Orifi, A. Seprodi, A. Varadi, B. Sarkadi and G. Keri. Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochemica et Biophysica Acta, 2002, 1587(2): 318-325.
[31] F. X. Mahon, F. Belloc, V. Lagarde, C. Chollet, F. Moreau- Gaudry, J. Reiffers, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models Blood, 2003, 101(6): 2368-2373.
[32] J. Thomas, L. Wang, R. E. Clark and M. Pirmohamed. Active transport of imatinib into and out of cells: Implications for drug resistance. Blood, 2004, 104(12): 3739-3745.
[33] H. Rumpold, A. M. Wolf, K. Gruenewald, et al. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Experimental Hematology, 2005, 33(7): 767-775.
[34] F. Mitelman, G. Levan, P. G. Nilsson and L. Brandt. Non-random karyotypic evolution in chronic myeloid leukemia. International Journal of Cancer, 1976, 18(1): 24-30.
[35] C. Schoch, T. Haferlach, W. Kern, et al. Occurrence of addi- tional chromosome aberrations in chronic myeloid leukemia pa- tients treated with imatinib mesylate. Leukemia, 2003, 17(2): 461- 463.
[36] D. Verma, H. Kantarjian, J. Shan, et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer, 2010, 116(11): 2673-2681.
[37] J. E. Cortes, M. Talpaz, F. Giles, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood, 2003, 101(10): 3794-3800.
[38] M. E. O’Dwyer, M. J. Mauro, G. Kurilik, et al The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood, 2002, 100(5): 1628-1633.
[39] M. E. O’Dwyer, M. J. Mauro, C. Blasdel, et al. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood, 2004, 103(2): 451-455.
[40] C. Schoch, T. Haferlach, W. Kern, et al. Occurrence of addi- tional chromosome aberrations in chronic myeloid leukemia pa- tients treated with imatinib mesylate. Leukemia, 2003, 17(2): 461-463.
[41] M. Baccarani, J. Cortes, F. Pane, et al. Chronic myeloid leuke- mia: An update of concepts and management recommendations of European Leukemia. Journal of Clinical Oncology, 2009, 27(35): 6041-6051.
[42] H. Kantarjian, T. Smith, K. McCredie, et al. Chronic myeloge- nous leukemia: A multivariate analysis of the associations of pa- tient characteristics and therapy with survival. Blood, 1985, 66(6): 1326-1335.
[43] H. M. Kantarjian, M. J. Keating, et al. Proposal for a simple synthesis prognostic staging system in chronic myelogenous leukemia. American Journal of Medicine, 1990, 88(1): 1-8.
[44] F. Mitelman. The cytogenetic scenario of chronic myeloid leu- kemia. Leuk Lymphoma, 1993, 11(s1): 11-15.
[45] F. Albano, G. Specchia, L. Anelli, et al. Genomic deletions on other chromosomes involved in variant t(9, 22) chronic myeloid leukemia cases. Genes Chromosomes Cancer, 2003, 36(4): 353- 360.
[46] M. M. T. El-Zimaity, H. Kantarjian, M. Talpaz, et al. Results of imatinib mesylate therapy in chronic myelogenous leukaemia with variant Philadelphia chromosome. British Journal of Hae- matology, 2004, 125(2): 187-195.
[47] J. Nicholas, D. Ji, Y. Wu, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood, 2003, 101(2): 690- 698.