酚醛树脂基中空碳微球的制备及其孔结构研究
Fabrication of Phenolic Formaldehyde-Basedhollow Carbon Microspheres and Study of Their Pore Structure
DOI: 10.12677/MS.2012.23018, PDF, HTML, 下载: 4,626  浏览: 13,442  科研立项经费支持
作者: 夏 铭*:清华大学机械工程系;巩前明*:教育部先进材料制备重点实验室
关键词: 中空碳微球孔结构比表面积Hollow Carbon Microspheres; Pore Structure; Specific Area
摘要: 本文利用磺化聚苯乙烯微球作为模板,酚醛树脂作为碳前驱体制备出直径约460 nm,壁厚约80 nm的中空碳微球。利用氮气吸附法对所制备的中空碳微球进行孔结构表征,结果显示其比表面积为492.89 m2/g,孔结构以直径为4 nm左右的中孔为主。
Abstract: In this study, hollow carbon microspheres with diameter about 460 nm and a shell of about 80 nm were fab- ricated using sulfonated polystyrene microspheres as templates and phenolic formaldehyde resins as carbon precursor. The pore structure of hollow carbon microspheres was characterized through nitrogen adsorption method, which showed that the specific area of hollow carbon microspheres was 492.89 m2/g and the pores were mainly composed of mesopores with diameter about 4 nm.
文章引用:夏铭, 巩前明. 酚醛树脂基中空碳微球的制备及其孔结构研究[J]. 材料科学, 2012, 2(3): 101-105. http://dx.doi.org/10.12677/MS.2012.23018

参考文献

[1] J. Wu, F. P. Hu, X. D. Hu, et al. Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts. Electrochimica Acta, 2008, 53(28): 8341-8345.
[2] J. H. Zhou, J. P. He, C. X. Zhang, et al. Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material. Materials Characterization, 2010, 61(1): 31-38.
[3] X. W. Lou, C. M. Li and L. A. Archer. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials, 2009, 21(24): 2536-2539.
[4] T. W. Kim, P. W. Chung, Slowing, II, et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Letters, 2008, 8(11): 3724- 3727.
[5] L. M. Guo, L. X. Zhang and J. L. Shi. The size modulation of hollow mesoporous carbon spheres synthesized by a simplified hard template route. Materials Letters, 2011, 65(1): 1-3.
[6] S. B. Yang, X. L. Feng, L. J. Zhi, et al. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Advanced Materials, 2010, 22(7): 838- 842.
[7] M. Yang, J. Ma, S. J. Ding, et al. Phenolic resin and derived carbon hollow spheres. Macromolecular Chemistry and Physics, 2006, 207(18): 1633-1639.
[8] J. H. Zhang, Z. Chen, Z. L. Wang, et al. Preparation of moho- disperse polystyrene spheres in aqueous alcohol system. Materials Letters, 2003, 57(28): 4466-4470.
[9] 张智勇. 中空碳球的制备[D]. 北京化工大学, 2008.
[10] E. B. Orler, D. J. Yontz and R. B. Moore. Sulfonation of syndio- tactic polystyrene for model semicrystallineionomer investiga- tions. Macromolecules, 1993, 26(19): 5157-5160.
[11] S. Rastogi, V. D. Gupta. Normal vibrations and their dispersion in syndiotactic polystyrene. Journal of Macromolecular Science: Part B, 1994, 33(2): 129-141.
[12] J. J. Fitzgerald, R. A. Weiss. Cation-anion and cation-cation interactions in sulfonated polystyrene ionomers: Spectroscopic studies of the effects of solvernts. In: A. Eisenberg, F. Bailey, Eds., Coulombic Interactions in Macromolecular Systems. Wash- ington DC: American Chemical Society, 1980: 35.