非晶合金薄板的弧形连铸技术
Curved Continuous Casting of Glassy Alloy Sheets
DOI: 10.12677/MS.2012.23021, PDF, HTML, XML, 下载: 4,072  浏览: 12,339  国家科技经费支持
作者: 陈招娣*, 张 涛*, 张 勇*:北京科技大学新金属材料国家重点实验室
关键词: 非晶合金薄板连续制备技术弧形连铸Amorphous Alloys; Sheets; Continuous Casting Method; Curved Continuous Casting
摘要: 本文简要介绍了非晶合金的发展现状及非晶连续制备技术,并提出了一种弧形连铸技术制备非晶合金薄板的新思路。非晶合金新型连续制备技术及其相关非晶样品不断涌现出来,对促进非晶合金快速发展和推广应用起了重要作用。经过近50年广泛而深入的科学研究,对块体非晶合金的研究已经进入开发性能卓越、质量稳定的非晶合金新产品和可大批量工业化生产的新技术阶段。非晶合金薄板弧形铸坯连铸技术可以充分发挥非晶合金的大过冷液体区间和塑性加工成形特性,有效减少样品再加工工序,提高生产效率,节约能源消耗,降低生产成本。
Abstract: A new curved continuous casting method for massive production of glassy alloy sheets has been proposed in this paper. Recently, a lot of new methods for continuous producing of bulk metallic glasses have been adopted for massive preparation. The research and development of glassy alloys have been certainly improved by these methods. After nearly 50 years of extensive and in-depth research, attentions have been paid to develop new amorphous alloys with excellent performance, products with high quality and novel technique for industrial applications. Curved con- tinuous casting of glassy alloys could have high efficiencies, low energy consumptions and near net shape casting.
文章引用:陈招娣, 张涛, 张勇. 非晶合金薄板的弧形连铸技术[J]. 材料科学, 2012, 2(3): 117-123. http://dx.doi.org/10.12677/MS.2012.23021

参考文献

[1] 惠希东, 陈国良. 块体非晶合金[M]. 北京: 化学工业出版社, 2007.
[2] X. J. Liu, G. L. Chen, F. Li, et al. Evolution of atomic ordering in metallic glasses. Intermetallics, 2010, 18(12): 2333-2337.
[3] H. L. Peng, M. Z. Li, W. H. Wang, et al. Effect of local structures and atomic packing on glass forming ability in cuxzr100-x metallic glasses. Applied Physics Letters, 2010, 96(2): Article ID 021901.
[4] W. Klement, R. H. Willens and P. Duwez. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960, 187: 869-870.
[5] J. Mu, H. M. Fu, Z. W. Zhu, et al. Synthesis and properties of Al-Ni-La bulk metallic glass. Advanced Engineering Materials, 2009, 11(7): 530-532.
[6] H. B. Lou, X. D. Wang, Q. P. Cao, et al. 73 mm-diameter bulk metallic glass rod by copper mould casting. Applied Physics Letters, 2011, 99(5): Article 051910.
[7] A. Inoue, A. Takeuchi. Recent development and applications of bulk glassy alloys. International Journal of Applied Glass Science, 2010, 1(3): 273-295.
[8] G. Kumar, A. Desai and J. Schroers. Bulk metallic glass: The smaller the better. Advanced Materials, 2011, 23(4): 461-476.
[9] N. Nishiyama, K. Takenaka, N. Togashi, et al. Glassy alloy composites for information technology applications. Intermetallics, 2010, 18(10): 1983-1987.
[10] B. Zberg, P. J. Uggowitzer and J. F. Löffler. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887-891.
[11] Q. Luo, W. H. Wang. Rare earth based bulk metallic glasses. Journal of Non-Crystalline Solids, 2009, 355(13): 759-775.
[12] B. Zhang, D. Q. Zhao, M. X. Pan, et al. Amorphous metallic plastic. Physical Review Letters, 2005, 94(20): Article ID 20550 220.
[13] B. J. Yang, J. H. Yao, J. Zhang, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Materialia, 2009, 61(4): 423-426.
[14] J. Mu, H. M. Fu, Z. W. Zhu, et al. Synthesis and properties of Al-Ni-La bulk metallic glass. Advanced Engineering Materials, 2009, 11(7): 530-532.
[15] Y. M. Wang, Q. Wang, J. J. Zhao, et al. Ni-Ta binary bulk metallic glasses. Scripta Materialia, 2010, 63(2): 178-180.
[16] J. F. Wang, R. Li, N. B. Hua, et al. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. Journal of Materials Research, 2011, 26(16): 2072-2079.
[17] H. T. Zong, M. Z. Ma, L. Liu, et al. Wf/Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass composites prepared by a new melt infiltrating method. Journal of Alloys and Compounds, 2010, 504: S106- S109.
[18] X. H. Chen, B. Y. Zhang, G. L. Chen, et al. Continuously manu- facturing of bulk metallic glass-coated wire composite. Inter- metallics, 2010, 18(11): 2034-2038.
[19] J. W. Qiao, S. Wang, Y. Zhang, et al. Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites syn- thesized by the Bridgman solidification. Applied Physics Letters, 2009, 94(15): Article ID 15190515.
[20] 乔珺威, 张勇, 陈国良. 定向凝固制备内生晶体增塑的锆基非晶复合材料[J]. 金属学报, 2009, 45(4): 410-414.
[21] J. C. Huang, J. P. Chu and J. Jang. Recent progress in metallic glasses in Taiwan. Intermetallics, 2009, 17(12): 973-987.
[22] J. J. Wall, C. Fan, P. K. Liaw, C. T. Liu and H. Choo. A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments, 2006, 77(3): Article ID 033902.
[23] T. A. Waniuk, J. Schroers and W. L. Johnson. Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys. Applied Physics Letters, 2001, 78(9): 1213-1215.
[24] 陈伟荣, 王英敏, 董闯等. 吸铸法制备Zr-Al-Ni-Cu-Mo大块非晶合金[J]. 热加工工艺, 2001, 6: 25-26.
[25] A. Inoue, T. Zhang, N. Nishiyama, K. Ohbaa and T. Masumoto. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5 Ni10Cu17.5. Materials Transacyions—JIM, 1993, 34: 1234-1237.
[26] E. Soinila, T. Pihlajamäki, S. Bossuyt and H. Hänninen. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials. Review of Scientific Instruments, 82(7): Article ID 073901.
[27] E. Soinila, K. Antin, S. Bossuyt, et al. Bulk metallic glass tube casting. Journal of Alloys and Compounds, 2011, 509(1): 210- 213.
[28] J. Torrens-Serra, P. Bruna, J. Rodriguez-Viejo, et al. Study of crystallization process of Fe65Nb10B25 and Fe70Nb10B20 glassy metals. Reviews on Advanced Materials Science, 2008, 18(5): 464-468.
[29] H. S. Chen, C. E. Miller. A rapid quenching technique for pre- paration of thin uniform films of amorphous solids. Review of Scientific Instruments, 1970, 41(8): 1237.
[30] T. Masumoto, I. Ohnaka, A. Inoue, et al. Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scripta Metallurgica, 1981, 15(3): 293-296.
[31] P. Rudkowski, G. Rudkowska and J. O. Stromolsen. The fabrication of fine metallic fibers by continuous melt-extraction and their magnetic and mechanical properties. Materials Science and Engineering A, 1991, 133: 158-161.
[32] T. Nagase, K. Kinoshita and Y. Umakoshi. Preparation of Zr- based metallic glass wires for biomaterials by are-melting type melt-extraction method. Materials Transactions, 2008, 49(6): 1385- 1394.
[33] J. G. Lee, H. Lee, Y. S. Oh, et al. Continuous fabrication of bulk amorphous alloy sheets by twin-roll strip casting. Intermetallics, 2006, 14(8-9): 987-993.
[34] J. G. Lee, S. S. Park, S. B. Lee, et al. Sheet fabrication of bulk amorphous alloys by twin-roll strip casting. Scripta Materialia, 2005, 53(6): 693-697.
[35] K. A. Lee, Y. C. Kim, J. H. Kim, et al. Mechanical properties of Fe-Ni-Cr-Si-B bulk glassy alloy. Materials Science and Engineering A, 2007, 449: 181-184.
[36] A. Urata, N. Nishiyama, K. Amiya, et al. Continuous casting of thick Fe-base glassy plates by twin-roller melt-spinning. Materials Science and Engineering A, 2007, 449: 269-272.
[37] W. Liao, J. Hu and Y. Zhang. Micro forming and deformation behaviors of Zr50.5Cu27.45Ni13.05Al9 amorphous wires. Intermetal- lics, 2012, 20(1): 82-86.
[38] X. H. Chen, B. Y. Zhang, G. L. Chen, et al. Continuously manu- facturing of bulk metallic glass-coated wire composite. Inter- metallics, 2010, 18(11): 2034-2038.
[39] 简讯. 电磁振动连续铸造金属玻璃[J]. 金属功能材料, 2007, 14(2): 31.
[40] S. Ishihara, H. Soejima, S. Komaba, et al. Production of glassy coil springs by warm coiling of Zr-based glassy alloy wires. Materials Transactions, 2004, 45(8): 2788-2790.
[41] T. Zhang, X. G. Zhang, W. Zhang, et al. Study on continuous casting of bulk metallic glass. Materials Letters, 2011, 65(14): 2257-2260.
[42] 张涛. 非晶合金连续制备技术与强磁场处理研究[D]. 大连理工大学, 2011.