PEDOT:PSS在有机太阳能电池中的应用研究进展
Research Progress of PEDOT:PSS Application in Organic Solar Cells
DOI: 10.12677/JAPC.2024.131008, PDF, HTML, XML, 下载: 94  浏览: 416 
作者: 许文博, 宋世伟, 王 承:上海理工大学机械工程学院,上海
关键词: 有机太阳能电池PEDOT:PSS空穴传输层能量装换效率Organic Solar Cells PEDOT:PSS Hole Transport Layer Power Conversion Efficiency
摘要: 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)具有良好的导电性和柔性,在可穿戴的柔性电致变色器件和柔性太阳能电池中显示出巨大的潜力。通过不同的化学沉积和物理掺杂可以更大的提高PEDOT:PSS的电化学性能。目前PEDOT:PSS在有机太阳能电池(Organic solar cells, OSCs)空穴传输层(HTL)的应用研究极为广泛,但是其具有低电导率、水/氧敏感、腐蚀电极等缺陷。为了追求优异的性能,常用的PEDOT:PSS空穴传输层仍需优化。本文综述了近年来PEDOT:PSS的各种改善方法和在有机太阳能电池空穴传输层中的应用研究最新进展,并介绍了PEDOT:PSS在柔性有机太阳能电池的应用。
Abstract: Poly (3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS) has good electrical conductivity and flexibility, and shows great potential in wearable flexible electrochromic devices and flexible solar cells. The electrochemical properties of PEDOT:PSS can be greatly improved by different chemical deposition and physical doping. At present, PEDOT:PSS has been widely applied in the hole transport layer (HTL) of organic solar cells, but it has some defects such as low conductivity, water/oxygen sensitivity, corrosion electrode and so on. In order to pursue excellent performance, the commonly used PEDOT:PSS hole transport layer still needs to be optimized. In this paper, the application of PEDOT:PSS in organic solar cells is reviewed, and the different deposition methods of PEDOT:PSS and the method and mechanism of improving the performance of organic solar cells by composite films are introduced.
文章引用:许文博, 宋世伟, 王承. PEDOT:PSS在有机太阳能电池中的应用研究进展[J]. 物理化学进展, 2024, 13(1): 54-64. https://doi.org/10.12677/JAPC.2024.131008

1. 引言

随着绿色能源产业的爆炸式发展,太阳能市场引起广泛关注,基于太阳能的光电子器件取得了巨大进展 [1] [2] [3] [4] [5] 。有机太阳能电池(Organic solar cells, OSCs)在能量转换领域和其他潜在的能源管理设备中是一种很有前途的候选者。它具有质量轻、可印刷生产且成本较低、并可制成柔性电池器件等优点吸引了广大学者的兴趣 [6] [7] [8] [9] 。1958年,Kearns和Calvin将有机染料夹在两个电极之间制备成功首个OSCs器件 [10] 。如今有机太阳能电池的功率转换效率(PCE)已提升从1%提高至19% [11] [12] 。Yuan等人 [13] 报道了以PM6为供体、以窄带隙小分子Y6为受体的二元OSCs,其功率转换效率为15.7%。Xiong等人 [14] 合成了新的供体生产的OSCs功率转换效率超过16%,取得了极大的进展。

有机太阳能电池性能参数主要有能量转换效率(PCE)、填充因子(FF)、开路电压(VOC)、短路电流密度(JSC)。OSCs的结构主要由氧化铟锡(ITO)阳极、空穴传输层(HTL)、活性层、电子传输层、电极等构成见图1(a)。空穴传输层的作用是帮助电荷在太阳能的传输与收集、减小界面壁垒等,是太阳电池稳定性和光伏转换效率的重要影响因素之一 [15] [16] 。目前,常用的空穴传输层材料主要包括有机材料(氧化石墨烯)、无机材料(过渡金属氧化物)和有机无机杂化材料 [17] [18] 。为了实现更高的OSCs功率转换效率,除了合成新材料外,还需要更多的研究来发现空穴/电子传输层。到目前为止,聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)由于其能级合适、机械柔性高和可见光区域足够的光学透明度,已成为OSCs中最受欢迎的HTL材料 [19] 。其分子结构见图1(b)所示。

Figure 1. (a) Schematic of traditional structure OSCs; (b) Molecule structures of PEDOT:PSS [19]

图1. (a) 传统结构OSCs示意图;(b) PEDOT:PSS的分子结构 [19]

PEDOT是一种不溶于水的导电聚合物,需要掺杂聚(苯乙烯磺酸盐)阴离子(PSS),然后它可以很好地分散在水溶液中,形成稳定的PEDOT:PSS悬浮液。但是PEDOT:PSS的链状结构在悬浮液中处于相互缠绕的无序结构,这会导致其在化学反应过程中的可控性低,从而降低其电化学性能 [20] 。所以,与其他空穴传输材料相比,PEDOT:PSS存在电导率较低的问题。

此外,由于PSS的吸湿性和酸性,PEDOT:PSS作为空穴传输层可以降解有机层从而缩短器件寿命 [21] [22] 。针对上述PEDOT:PSS存在的问题。本文综述了近年来PEDOT:PSS的各种改善方法和在有机太阳能电池空穴传输层中的应用研究最新进展,并介绍了PEDOT:PSS在柔性有机太阳能电池的应用。

2. PEDOT:PSS的改性或掺杂处理

PEDOT:PSS具有易成膜性且透明性高的特点,一般用作有机太阳能电池的空穴传输层,具有高电导率、低带隙等优点,但其酸性和腐蚀性会降低OSCs的使用寿命。此外PEDOT:PSS的电导率低于金属,电荷载流子存储过程中的能量损失较大从而导致OSCs的功能转换效率降低。因此对PEDOT:PSS的进行优化处理从而提升其电导率和降低其腐蚀性是非常重要的。

2.1. PEDOT:PSS的酸处理

PEDOT:PSS的酸处理是通过酸性溶液中的阳离子(H+)和阴离子(PSS)相结合,从而使PEDOT和PSS在溶液中相分离以提高PEDOT:PSS的导电性。Mengistie等人 [23] 用甲酸处理PEDOT:PSS膜,削弱了PEDOT与PSS之间的库伦力,使得PEDOT链构象发生改变,将PEDOT:PSS膜的电导率提高了4个数量级,达到2050 S/cm,将该膜用作基于P3HT:PCBM的OSCs的空穴传输层,其PCE达到4.10%。酸处理后PEDOT:PSS形态结构变化示意图见图2。Fan等人 [24] 选用几种不同酸(HCl、H2SO4、CH4SO3、H3PO4、H2C2O4)来掺杂PEDOT:PSS,发现CH4SO3处理的PEDOT:PSS电导率最高为3470 S/cm,研究还发现,在高温条件下H+与PSS会结合形成PSSH,从而导致PEDOT与PSS相分离,进而提高了PEDOT:PSS的电导率。

Figure 2. Schematic diagram of morphological and compositional changes of PEDOT:PSS films after adding acid treatment [25]

图2. 加酸处理后PEDOT:PSS膜形态及成分变化示意图 [25]

使用弱酸性物质对PEDOT:PSS进行掺杂处理是减弱其对电极的腐蚀是提成OSCs的性能并延长使用寿命的一种方法。用酸性较弱的POM对PEDOT:PSS进行优化,使基于PBDB-TF:BTP-eC9二元OSCs能获得17.62%的PCE [26] 。Cao等人 [27] 使用磺化丙酮甲醛木质素(GSL)见图3(a)与PEDOT:PSS进行掺杂反应并应用到基于PTB7-Th:PC71BM见图3(b)为活性层的有机太阳能电池中。由于GLS与PEDOT:PSS发生反应形成稳定的弱酸性化学结构,加快了空穴传输到阳极的速度,使得制作的OSCs的PCE提升到了8.47%,相较于使用PEDOT:PSS的原始有机太阳能电池的PCE提升了10%。同时新生成的PEDOT:GSL酸性更弱,降低了空穴传输层对对保护活性层的腐蚀,极大地提升了器件稳定性和使用寿命,为PEDOT:PSS做空穴传输层的优化提供了全新的思路。

Figure 3. (a) GSL chemical structure diagram; (b) Schematic diagram of OSCs after GSL replacement [27]

图3. (a) GSL化学结构图;(b) 添加GSL后修饰的OSCs示意图 [27]

Yagci等人 [28] 制备了不同浓度0~5 mg/ml硼酸(H3BO3)掺杂的PEDOT:PSS薄膜作为空穴传输层。采用旋涂技术制备了未掺杂和硼酸掺杂的PEDOT:PSS薄膜,并通过XRD、UV、AFM、FTIR和电导率测量对其进行了表征。制备了ITO/PEDOT:PSS:H3BO3/P3HT:PCBM/Al形式的OSCs。在PEDOT:PSS中H3BO3浓度为1.25 mg/ml的电池显示出更高的性能,导致在AM1.5G照明下的PCE为2.14%。Xiao等人 [29] 使用由吡啶基四硫富瓦烯衍生物(TTF-py)与PEDOT:PSS合成的双层HTL在基于PTB7-Th:PC71BM的OSCs中实现了9.37%的PCE,同时双层HTL的结构有效的削弱了空穴传输层对保护活性层的腐蚀性,保护了因ITO腐蚀造成的OSCs的性能衰减,极大地提升了器件的稳定性。同时TTF-py改性后的HTL有助于减少能量损失,增强了HTL与活性层的界面接触,从而整体提升了器件的PCE。

2.2. PEDOT:PSS的有机溶剂处理

利用有机溶剂改变PEDOT与PSS的比例,也是提高PEDOT:PSS电导率的常用方法。常见的有机溶剂主要包括二甲基亚砜(DMSO)、四氢呋喃、乙二醇、N,N-二甲基甲酰胺、山梨醇、甘油、甲氧基乙醇、2-丙醇等 [30] - [40] 。Yaily等人 [41] 基于易加工的石墨烯衍生物和PH1000 (导电PEDOT:PSS聚合物)。将合成的石墨烯衍生物在水悬浮液中进行处理并滴涂在普通玻璃基板上,另将二甲基亚砜(DMSO)改性的PH1000旋涂到SPG层上。制造基于双层替代电极用于非富勒烯PBDB-T:ITIC活性层的有机太阳能电池(OSCs)。控制器件(使用ITO作为阳极)的平均功率转换效率(PCE)为4.0% (最佳4.2%),而具有替代SPG/PH1000双层阳极的器件的平均功率转化效率(PCE)为8.3% (最佳8.6%)。Jang等人 [42] 通过用醇基溶剂2-氯乙醇(2-CE)后处理来提高PEDOT:PSS薄膜的电导率,在基于PTB7-Th:PC71BM的OSCs中用作透明阳极时,2-CE处理的PEDOT:PSS膜的性能为(PCE = 9.04%),比添加DMSO的膜(PCE = 7.63%)具有更好的性能。2015年,Saghaei等人 [43] 使用苯酚掺杂PEDOT:PSS,PEDOT:PSS薄膜经苯酚蒸汽处理后的电导率提高到1193 S/cm,经苯酚液滴处理后的导电率提高到1054 S/cm。经过苯酚处理后,PEDOT片段在整个膜中的重排以及由此引起的构象变化是导电性增强的主要原因。将改性的PEDOT:PSS膜用作无ITO有机太阳能电池(OSCs)的电极。以苯酚处理的PEDOT:PSS薄膜为阳极,使基于P3HT:PCBM为活性层的OSCs的PCE为3.29%。Zhang等人 [44] 用甲醇处理后的PEDOT:PSS电导率从5.51 × 10−4 S/cm升至了4.04 × 10−2 S/cm,显著提升了近两个数量级。这主要是因为使用甲醇处理后,绝缘的PSS被冲刷,PEDOT的空穴传输能力得到了更好的发挥,将其作为HTL使用于PTB7-Th:PC71BM体系时,PCE从8.4%提升至9.4%。Zhang等人 [45] 使用黑磷量子点(BPQDs)修饰PEDOT:PSS作为空穴传输层。BPQDs具有高的空穴传输率和带隙可调性可以满足OSCs中对能级可调的需求。BPQDs在器件内部与PEDOT:PSS的结合优化了ITO阳极和聚合物供体之间的级联能带结构,促进了空穴提取与传输。在基于PTB7-Th:PC71BM的体系中,使得器件的PCE从8.12%增加到9.11%。在活性层为PM6:IT-4F的非富勒烯体系中,制作器件结构为ITO/PEDOT:PSS-BPQDs/活性层/PFN/Al。其OSCs的PCE从11.65%提高到12.81%。Xie等人 [46] 提出了一种简单且经济高效的方法,通过掺杂乙氧基化聚乙烯亚胺(PEIE),将PEDOT:PSS的功函数从5.1 eV可控地调节到3.95 eV。PEIE掺杂的PEDOT:PSS薄膜可以在有机太阳能电池中用作阴极界面层,并研究了PEIE掺杂的PEDOT:PSS薄膜的光电特性、表面形貌和电子传输能力,基于掺杂5wt% PEIE的PEDOT:PSS膜制作的ITO/PEIE:PEDOT:PSS/P3HT:PCBM/MoO3/Al器件表现出与传统ZnO基器件相当的性能(JSC = 10.043 mA/cm2, VOC = 0.612 V, FF = 0.507, PCE = 3.121%)。部分使用酸和有机物处理PEDOT:PSS后的OSCs的光电转换效率见表1

Table 1. PCE of OSCs after PEDOT:PSS modified by different acids and organics

表1. 不同酸和有机物修饰PEDOT:PSS后OSCs的PCE

使用酸或有机物改善OSCs的性能的原理主要为能级微调和提升导电率,在掺杂DMSO/GO的OSCs的PEDOT:PSS作为空穴传输层的OSCs对于改善短路电流密度、开路电压效果最佳。使用甲醇修饰过的PEDOT:PS做空穴传输层的OSCs的填充因子效果最佳。使用BPQD修饰过的PEDOT:PS做空穴传输层的OSCs的功率转换效率效果最佳。但使用酸或有机物修饰PEDOT:PSS会增加空穴传输层酸性和对电极腐蚀性会降低OSCs的使用寿命。

2.3. PEDOT:PSS的纳米材料掺杂处理

由于部分纳米材料具有良好的导电性,使用纳米材料和PEDOT:PSS进行掺杂处理有利于增加PEDOT:PSS的电荷转移效率,从而明显的提高电导率,使得那纳米材料/PEDOT:PSS在空穴传输层的电荷转移能力增强。Li等人 [47] 将石墨烯掺杂入PEDOT:PSS使用传统的旋涂方法制备了PEDOT/PSS/GQDs复合薄膜,通过GQD的调控PEDOT:PSS的苯–醌结构转变。使优化后的PEDOT:PSS/GQDs复合膜作为空穴传输层的OSCs的PCE提升到16.15%。比PEDOT:PSS膜上制备的钙钛矿太阳能电池的平均功率转换效率提高了35%。Tien Nguyen等 [48] 人在以PEDOT:PSS做的HTL中引入具有可控电导率和带边的碳量子点(CQD)来提高PEDOT:PSS的电导率。通过PEDOT链和CQD之间通过π-π相互作用,以及提高了光活性层和顶部阳极之间接触界面的兼容性。优化了PEDOT:PSS中CQD的掺入比例(PH-G 0.05),以PM6:BTP-eC9、PSeHD:Y6为活性层的OSCs的HTL。使用足量的基于CQDs的HTL改性的PH的OSCs在VOC和JSC方面都表现出显著的增强,导致PCE高达3.90%。Wang等人 [49] 将二氧化钛(TiO2)掺杂到基于PEDOT:PSS的空穴传输层中,优化了HTL和电极活性之间的接触并促进了活性层对光子的捕获,建立了良好的空穴传输通道。加快了PBDB-T向活性层的迁移速率,使得PBDB-T和N2200之间更容易垂直分离,进而提高了OSCs的PCE和稳定性。使得在PEDOT:PSS夹层中掺杂2% TiO2的器件的PCE为8.9%。Wang等人 [50] 通过一种简单且具有成本效益的液相剥离(LPE)方法开发了掺杂到PEDOT:PSS中的WS2纳米片(WS2NS) (PEDOT:PSS/WS2-NS)作为有机太阳能电池(OSCs)的有效空穴传输层(HTL)。由于PEDOT:PSS:WS2-NS阳极夹层具有较高的功函数。降低了HTL粗糙度,提高了空穴迁移率,使得基于PM6:Y6的OSCs的PCE从14.35%提高到15.67%。

Hou等人 [51] 通过将WOX纳米颗粒对PEDOT:PSS进行掺杂处理,改善了空穴传输层的表面自由能以及HTL和活性层的形态,更有利于载流子迁移率的平衡。使得基于PM6:IT-4F体系的OSCs获得了14.57%的PCE和超过80%的填充因子,这也是该体系该论文发表之前达到最高的填充因子之一。Kim等人 [52] 研究了金纳米粒子嵌入PEDOT:PSS作为有机太阳能电池(OSCs)空穴传输层(HTL)的退火效应。退火温度(110℃、130℃和150℃)影响器件的表面形貌和电学性能。OSCs的最终器件结构由ITO涂层玻璃/PEDOT:PSS + Au/NPs/P3HT:PCBM/Al阴极组成。得出HTL在110℃退火的OSC获得了最佳的电学性能、表明并联电阻(5.84 Ω)、串联电阻(152.5 Ω)和PCE值(2.8%)。Nazim等人 [53] 合成了一种新的具有呋喃间隔物的噻唑并[5,4-d]噻唑核有机发色团(TP-FTzF-TP),并用石墨烯(Gr)修饰了PEDOT:PSS缓冲层,用于高效溶液处理体异质结(BHJ)小分子OSCs。在基于噻唑并[5,4-d]噻唑核的有机发色团中引入呋喃作为间隔物调节了吸收和电化学性质。合成的TP-FTzF-TP发色团表现出良好的光学参数和−5.33 eV/−3.15 eV的HOMO/LUMO值。Gr对PEDOT:PSS的改性显著提高了薄膜的粗糙度。采用ITO/Gr:PEDOT:PSS/TP-FTzF-TP:PC60BM/Au结构制造的SMOSC器件实现了PCE为3.63%。部分使用纳米颗粒处理PEDOT:PSS后的OSCs的光电转换效率见表2

Table 2. PCE of OSCs after PEDOT:PSS modified by different nanomaterials

表2. 不同纳米材料修饰PEDOT:PSS后的OSCs的PCE

使用纳米材料改善OSCs的性能的原理主要为改善形貌、增强电荷转移、提升导电率,在基于掺杂GDQ的PEDOT:PSS作为空穴传输层的OSCs其对于改善短路电流密度、开路电压、填充因子、功率转换效率效果最佳。纳米材料修饰的PEDOT:PSS作为空穴传输材料的显著优点是功函数合适、光透过率高、稳定性好、PCE高,但存在的明显缺陷是加工成本高,不宜进行大规模生产,还需要对其加工方式进行更深入的研究。

2.4. 其他处理方法

除了上述处理方法,其他提高PEDOT:PSS电导率的方法主要有使用有机离子液体、盐、盐、稀土元素、表面活性剂和导电聚合物等处理方法。Li等人 [54] 基于PM6:Y6:PC71BM的PEDOT:PSS后处理进行了全面的研究。通过水洗的方法对PEDOT:PSS进行改性处理,减少HTL表面缺陷以提高导电性。通过这种方法,使得基于PTB7-Th:PC71BM为活性层的有机太阳能电池中OSCs的PCE从15.9%提高到16.7%。Tien Nguyen等人 [55] 使用各种溶剂和表面活性剂(GO)成功地调节了PEDOT:PSS溶液的亲水性。将氧化石墨烯(GO)胶体悬浮液在PEDOT:PSS内的分散,通过GO改变PEDOT链的构象,提高了PEDOT:PSS的点子传输速率,进一步提升了导电率。使得基于m-PEDOT:PSS(PH5)结构的用PH5-GO1制备的iOPV的PCE高达4.13%。Mohammad等人 [56] 在PEDOT:PSS喷射沉积的过程中掺杂Eu3+以产生阳极缓冲层(ABL),对PEDOT:PSS进行改性处理后产生的ABL表面更光滑,粗糙度更低。在用作ABL的基于PTB7:PC71BM的有机太阳能电池(ITO/ABL/PTB7:PC71BM/Al)中,提高了所提出器件的电流密度,使得OSCs的PCE从2.53%增加到2.79%,并且通过在ABL的喷射沉积过程中施加电场,PCE进一步增加到3.97%。Li等人 [57] 使用非离子表面活性剂(聚乙二醇2,5,8,11-四甲基-6-十二碳炔-5,8-二醇醚,PEG-TmDD),它通过改善PEDOT:PSS水溶液在有机光活性层上的润湿性能进而提高电导率,这可能归因于在酸性条件下的热退火过程中PEG-TmDD分解为EG和TmDD。生成的EG诱导PEDOT和PSS链的分离和聚集,使基于P3HT:ICBA为活性层的OSCs的PCE达到4.1%。Jdigoras等人 [58] 通过印刷的方式将PEDOT:PSS印刷在蜂窝状银网络上用于染料敏化太阳能电池的阴极,一方面蜂窝状银网络可以降低与导电涂层之间的电阻,另一方面PEDOT层可以产生高的表面积用于有效的电催化,增加了导电性。与传统的铂电极相比,其转换效率相当,且所采用的方法简便无毒,成本更低,同时在柔性方面也取得了不错的效果。Thokchom等人 [59] 用Silvaco TCAD Atlas工具对含有PEDOT:PSS和石墨烯层的太阳能电池的优化设计和模拟进行了计算研究。以聚对苯二甲酸乙二醇酯(PET)被用作柔性基底,石墨烯被用作具有石墨烯/PEDOT:PSS/PE结构的器件的阴极。PEDOT:PSS层的厚度在50至90 nm之间变化。结果表明PEDOT:PSS厚度为70 nm的太阳能电池的性能优于其他太阳能电池。Kim等人 [60] 研究了导电聚合物聚(3,4-亚乙基二氧噻吩)–聚(苯乙烯磺酸盐) (PEDOT:PSS)作为溶液处理有机太阳能电池(OPV)顶部电极的导电性和功函数。通过调节不同级PEDOT:PSS (如PH1000和AI4083)的混合比例,可以改变电导率和功函数。PH1000和AI4083混合物的体积比为2:1,提供了443 S/cm的电导率,在AM1.5G光谱校准的100 mW/cm2照明下,制造的全溶液处理OPV提供了2.04%的最佳光转换效率(PCE),Peh等人 [61] 使用喷涂技术用于有机光伏制造。通过优化溶剂的润湿性、表面张力和沸点确保有机层的均匀涂覆。使得PEDOT:PSS悬浮液在疏水表面上的润湿性和干燥时间有所优化,在不影响器件性能的情况下获得了喷涂透明阳极。进一步将这种无真空工艺应用于近红外吸收剂,以获得透明度接近60%的透明有机太阳能电池,使得基于对P3HT:PCBM的润湿性大幅度改善。通过喷涂获得相对均匀和薄的Al4083层。P3HT:PCBM表面的AI4083层提高了水基PH500的润湿性。具有PH500阳极的P3HT:PCBM器件的PCE为1.79%。部分其他方式处理PEDOT:PSS后的OSCs的光电转换效率见表3

Table 3. PCE of OSCs after PEDOTPSS modified by other methods

表3. 其他方式修饰PEDOT:PSS后OSCs的PCE

使用其他方式改善OSCs的性能的原理主要为改善形貌、提升导电率等,在基于水洗修饰方法处理PEDOT:PSS作为空穴传输层的OSCs其对于改善短路电流密度、填充因子、功率转换效率效果最佳。在基于PEG-TmDD修饰PEDOT:PSS作为空穴传输层的OSCs其对于改善短路开率电压效果最佳。

通过不同处理方式修饰PEDOT:PSS作为OSCs的空穴传输层可以得出,通过提升PEDOT:PSS的电导率、改善形貌增加活性层/空穴传输层的电荷传输能力在提高有机太阳能电池PCE方面取得了理想的效果,但还存在一些关键问题需要解决,首先要降低PEDOT:PSS的酸性,其次要扩大大规模生产的方式。

3. PEDOT:PSS在柔性太阳能电池中的应用

2021年,Hu等人 [62] 将双(乙酰丙酮)二氧化钼(BADM)作为一种有效的掺杂剂引入到PEDOT:PSS中用于制备平面PSCs。结果表明,采用BADM对PEDOT:PSS进行修饰后,PCE由14.26%提高到17.11%,这主要是由于填充因子和短路电流密度的增加。不仅如此,BADM的掺杂有利于增强钙钛矿在柔性基体中的延展性,当轻微弯曲时,几乎没有裂纹。2020年,Castro等人 [63] 在环境条件下,在柔性无ITO基底上使用槽模涂布P3HT:O-IDTBR (一种高聚物)的方法制备了有机太阳能电池,并发现用异丙醇稀释PEDOT:PSS之后作为空穴传输层涂覆在活性层上时,活性层的光学带隙发生了变化,器件性能得到提高,通过辊压加工在大面积制造方面更具优势,这与PEDOT:PSS良好的力学柔性密不可分,当使用Ag作为背电极时,效率可以达到更高。

4. 总结与展望

本文主要综述了聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)的各种改善方法和在有机太阳能电池(OSCs)空穴传输层中的应用研究最新进展,有机太阳能电池作为一种新型的太阳能电池,近年来得到飞速发展,PEDOT:PSS作为OSCs传输层的PCE已达到19%。PEDOT:PSS是目前使用最广泛的有机空穴传输材料,但由于PEDOT:PSS的酸性和吸湿性对电池的电极和稳定性不利,从而束缚了其大规模生产和使用,所以降低PEDOT:PSS吸湿性和腐蚀性很重要。目前有机空穴传输层的材料还存在很多不足,但PEDOT:PSS作为有机空穴传输材料的修饰性有较高的灵活性,这使得我们在更高性能的有机空穴层传输材料的研究和开发具有重要意义。

参考文献

[1] Meng, L., Zhang, Y., Wan, X., et al. (2018) Organic and Solution-Processed Tandem Solar Cells with 17.3% Efficiency. Science, 361, 1094-1098.
[2] Jiang K., Wei Q., Lai J., et al. (2019) Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 3, 3020-3033.
https://doi.org/10.1016/j.joule.2019.09.010
[3] Li, H., Xiao, Z., Ding, L., et al. (2018) Thermostable Single-Junction Organic Solar Cells with a Power Conversion Efficiency of 14.62%. Science Bulletin, 63, 340-342.
https://doi.org/10.1016/j.scib.2018.02.015
[4] Sun, H., Liu, T., Yu, J., et al. (2019) A Monothiophene Unit Incorporating Both Fluoro and Ester Substitution Enabling High-Performance Donor Polymers for Non-Fullerene Solar Cells with 16.4% Efficiency. The Royal Society of Chemistry, 12, 3328-3337.
https://doi.org/10.1039/C9EE01890E
[5] Xiao, Z., Jia, X., Ding, L., et al. (2017) Ternary Organic Solar Cells Offer 14% Power Conversion Efficiency. Science Bulletin, 62, 1562-1564.
https://doi.org/10.1016/j.scib.2017.11.003
[6] Lu, S., Sun, Y., Ren, K., et al. (2017) Recent Development in ITO-Free Flexible Polymer Solar Cells. Polymers, 10, Article No. 5.
https://doi.org/10.3390/polym10010005
[7] Zhen, H., Wang, D., Yan, F., et al. (2018) Interfacial Engineering of Printable Bottom Back Metal Electrodes for Full-Solution Processed Flexible Organic Solar Cells. Semicond, 39, Article No. 9.
https://doi.org/10.1088/1674-4926/39/1/014002
[8] Liu, K., Lu, S.D., Yue, S.Z., et al. (2016) Wrinkled Substrate and Indium Tin Oxide-Free Transparent Electrode Making Organic Solar Cells Thinner in Active Layer. Power Sources, 331, 43-49.
https://doi.org/10.1016/j.jpowsour.2016.09.038
[9] Xiao, Z., Jia, X., Li, D., et al. (2017) 26 mAcm−2 JSc from Organic Solar Cells with a Low-Bandgap Non-Fullerene Acceptor. Science Bulletin, 62, 1494-1496.
https://doi.org/10.1016/j.scib.2017.10.017
[10] Antohe, S., Tugulea, L., et al. (2010) Electrical and Photovoltaic Properties of a Two-Layer Organic Photovoltaic Cell. Physica Status Solidi, 128, 253-260.
https://doi.org/10.1002/pssa.2211280128
[11] Salim, M.B., Nekovei, R., Jeyakumar, R., et al. (2020) Organic Tandem Solar Cells with 18.6% Efficiency. Solar Energy, 198, 160-166.
https://doi.org/10.1016/j.solener.2020.01.042
[12] Krebs, F.C., Espinosa, N., Hosel, M., et al. (2014) 25th Anniversary Article: Rise to Power-OPV-Based Solar Parks. Advanced Materials, 26, 29-39.
https://doi.org/10.1002/adma.201302031
[13] Yuan, J., Zhang, Y., Zhou, L., et al. (2019) Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 3, 1140-1151.
https://doi.org/10.1016/j.joule.2019.01.004
[14] Xiong, J., Jin, K., Jiang, Y.F., et al. (2019) Thiolactone Copolymer Donor Gifts Organic Solar Cells a 16.72% Efficiency. Science Bulletin, 64, 1573-1576.
https://doi.org/10.1016/j.scib.2019.10.002
[15] Liu, J., Liu, L., Zuo, C., et al. (2019) 5h-Dithieno[3,2-B:20,30-D]Pyran-5-One Unit Yields Efficient Wide-Bandgap Polymer Donors. Science Bulletin, 64, 1655-1657.
https://doi.org/10.1016/j.scib.2019.09.001
[16] Wang, T., Qin, J., Xiao, Z., et al. (2020) A 2.16 EV Bandgap Polymer Donor Gives 16% Power Conversion Efficiency. Science Bulletin, 65, 179-181.
https://doi.org/10.1016/j.scib.2019.11.030
[17] Yin, Z., Wei, J., Zheng, Q., et al. (2016) Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 3, Article ID: 1500362.
https://doi.org/10.1002/advs.201500362
[18] Sun, Y., Takacs, C.J., Cowan, S.R., et al. (2011) Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer. Advanced Materials, 23, 2226-2230.
https://doi.org/10.1002/adma.201100038
[19] Hu, L.J., Li, M., Yang, K., et al. (2018) PEDOT:PSS Monolayers to Enhance the Hole Extraction and Stability of Perovskite Solar Cells. Journal of Materials Chemistry, 6, 16583-16589.
https://doi.org/10.1039/C8TA05234D
[20] Wang, C., Sun, K., Fu, J., et al. (2018) Enhancement of Conductivity and Thermoelectric Property of PEDOT:PSS via Acid Doping and Single Post-Treatment for Flexible Power Generator. Advanced Sustainable Systems, 2, Article ID: 1800085.
https://doi.org/10.1002/adsu.201800085
[21] Skraba, P., Bratina, G., Igarashi, S., et al. (2011) In Diffusion and Electronic Energy Structure in Polymer Layers on in Tin Oxide. Thin Solid Films, 519, 4216-4219.
https://doi.org/10.1016/j.tsf.2011.02.034
[22] Xia, Y., Sun, K., Ouyang, J., et al. (2012) Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials, 24, 2436-2440.
https://doi.org/10.1002/adma.201104795
[23] Chung, J., Park, S.M., Chang, S.O., et al. (2014) A Novel Mutation of TMPRSS3 Related to Milder Auditory Phenotype in Korean Postlingual Deafness: A Possible Future Implication for a Personalized Auditory Rehabilitation. Journal of Molecular Medicine, 92, 651-663.
https://doi.org/10.1007/s00109-014-1128-3
[24] Fan, X., Xu, B., Liu, S., et al. (2016) Transfer-Printed PEDOT:PSS Electrodes Using Mild Acids for High Conductivity and Improved Stability with Application to Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 8, 14029-14036.
https://doi.org/10.1021/acsami.6b01389
[25] Ouyang, J., Xu, Q.F., Chu, C.W., et al. (2004) On the Mechanism of Conductivity Enhancement in Poly(3,4-Ethyle- nedioxythiophene):Poly(Styrene Sulfonate) Film through Solvent Treatment. Polymer, 45, 8443-8450.
https://doi.org/10.1016/j.polymer.2004.10.001
[26] Kang, Q., Liao, Q., Yang, C.Y., et al. (2022) A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 12, Article ID: 2103892.
https://doi.org/10.1002/aenm.202103892
[27] Hong, N.L., Xiao, J.Y., Li, Y.D., et al. (2016) Unexpected Fluorescent Emission of Graft Sulfonated-Acetone- Formaldehyde Lignin and Its Application as a Dopant of Pedot for High Performance Photovoltaic and Light-Emitting Devices. Journal of Materials Chemistry C, 4, 5297-5306.
https://doi.org/10.1039/C6TC01170E
[28] Yagci, O., et al. (2016) Effect of Boric Acid Doped PEDOT:PSS Layer on the Performance of P3[30]HT:PCBM Based Organic Solar Cells. Synthetic Metals, 212, 12-18.
https://doi.org/10.1016/j.synthmet.2015.11.010
[29] Liu, L., Li, F.F., Zhao, C.J., et al. (2019) Performance Enhancement of Conventional Polymer Solar Cells with TTF-Py-Modified PEDOT:PSS Film as the Hole Transport Layer. ACS Applied Energy Materials, 2, 6577-6583.
https://doi.org/10.1021/acsaem.9b01125
[30] Toshima, N., Ichikawa, S., et al. (2015) Conducting Polymers and Their Hybrids as Organic Thermoelectric Materials. Journal of Electronic Materials, 44, 384-390.
https://doi.org/10.1007/s11664-014-3312-1
[31] Zhu, Z., Song, H., Xu, J., et al. (2015) Significant Conductivity Enhancement of PEDOT:PSS Films Treated with Lithium Salt Solutions. Journal of Materials Science Materials in Electronics, 26, 429-434.
https://doi.org/10.1007/s10854-014-2417-x
[32] Huang, D., Goh, T., Kong, J., et al. (2017) Perovskite Solar Cells with a DMSO-Treated PEDOT:PSS Hole Transport Layer Exhibit Higher Photovoltaic Performance and Enhanced Durability. Nanoscale, 9, 4236-4243.
https://doi.org/10.1039/C6NR08375G
[33] Kim, G.H., Shao, L., Zhang, K., et al. (2013) Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency. Nature Materials, 12, 719-723.
https://doi.org/10.1038/nmat3635
[34] Timpanaro, S., Kemerink, M., Touwslager, F.J., et al. (2004) Morphology and Conductivity of PEDOT/PSS Films Studied by Scanning-Tunneling Microscopy. Chemical Physics Letters, 394, 339-343.
https://doi.org/10.1016/j.cplett.2004.07.035
[35] Yu, Z., Xia, Y., Du, D., et al. (2016) PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Applied Materials & Interfaces, 8, 11629-11638.
https://doi.org/10.1021/acsami.6b00317
[36] Seung, H.E. (2009) Polymer Solar Cells Based on Inkjet-Printed PEDOT:PSS Layer. Organic Electronics, 10, 536-542.
https://doi.org/10.1016/j.orgel.2009.01.015
[37] Kang, Y.J., Kim, C.S., Kim, D.G., et al. (2012) Fully Spray-Coated Inverted Organic Solar Cells. Solar Energy Materials and Solar Cells, 103, 76-79.
https://doi.org/10.1016/j.solmat.2012.04.027
[38] Hu, Z., Zhang, J., Hao, Z., et al. (2011) Influence of Doped PEDOT:PSS on the Performance of Polymer Solar Cells. Solar Energy Materials and Solar Cells, 95, 2763-2767.
https://doi.org/10.1016/j.solmat.2011.04.040
[39] Peng, B., Guo, X., Cui, C., et al. (2011) Performance Improvement of Polymer Solar Cells by Using a Solvent-Treated Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Buffer Layer. Applied Physics Letters, 98, Article ID: 243308.
https://doi.org/10.1063/1.3600665
[40] Xia, Y., Ouyang, J., et al. (2012) Significant Different Conductivities of the Two Grades of PoIy(3,4-Ethylenedioxy- thiophene):Poly(Styrenesulfonate), Clevios P and Clevios PH10007 Arising from Different Molecular Weights. ACS Applied Materials & Interfaces, 4, 4131-4140.
https://doi.org/10.1021/am300881m
[41] Fernandez-Arteaga, Y., Maldonado, J.L., Nicasio-Collazo, J., et al. (2021) Solution Processable Graphene Derivative Used in a Bilayer Anode with Conductive PEDOT:PSS on the Non-Fullerene PBDB-T:ITIC Based Organic Solar Cells. Solar Energy, 225, 656-665.
https://doi.org/10.1016/j.solener.2021.07.049
[42] Hong J., Min, S., et al. (2020) Highly Conductive PEDOT:PSS Electrode Obtained via Post-Treatment with Alcoholic Solvent for ITO-Free Organic Solar Cells. Journal of Industrial and Engineering Chemistry, 86, 205-210.
https://doi.org/10.1016/j.jiec.2020.03.005
[43] Saghaei, J., Fallahzadeh, A., Saghaei, T., et al. (2015) ITO-Free Organic Solar Cells Using Highly Conductive Phenol-Treated PEDOT:PSS Anodes. Organic Electronics, 24, 188-194.
https://doi.org/10.1016/j.orgel.2015.06.002
[44] Li, W.P., Zhang, X.L., Zhang, X., et al. (2017) High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol. ACS Applied Materials & Interfaces, 9, 1446-1452.
https://doi.org/10.1021/acsami.6b12389
[45] Zhang, X.L., Jiang, Q.Q., Wang, J.X., et al. (2020) Black Phosphorous Quantum Dots as an Effective Interlayer Modifier in Polymer Solar Cells. Solar Energy, 206, 670-676.
https://doi.org/10.1016/j.solener.2020.06.007
[46] Xie, Z., Xu, R., Chen, J., et al. (2019) The Modified PEDOT:PSS as Cathode Interfacial Layer for Scalable Organic Solar Cells. North-Holland, 71, 143-149.
https://doi.org/10.1016/j.orgel.2019.05.012
[47] Cheng, W.W., Nian, et al. (2020) Boost the Performance of Inverted Perovskite Solar Cells with PEDOT:PSS/Graphene Quantum Dots Composite Hole Transporting Layer. Organic Electronics, 78, Article ID: 105575.
https://doi.org/10.1016/j.orgel.2019.105575
[48] Nguyen, D.C.T., Kim, B., Geun, H., et al. (2023) Incorporation of Carbon Quantum Dots with PEDOT:PSS for High-Performance Inverted Organic Solar Cells. Synthetic Metals, 298, Article ID: 117430.
https://doi.org/10.1016/j.synthmet.2023.117430
[49] Wang, G., Zhang, M., Li, Z., et al. (2023) Efficient and Stable Organic Solar Cells Enabled by Incorporation of Titanium Dioxide Doped PEDOT:PSS as Hole Transport Layer. Progress in Organic Coatings, 183, Article ID: 107819.
https://doi.org/10.1016/j.porgcoat.2023.107819
[50] Wang, Y., Li, N., Cui, M., et al. (2021) High-Performance Hole Transport Layer Based on WS2 Doped PEDOT:PSS for Organic Solar Cells. Organic Electronics, 99, Article ID: 106305.
https://doi.org/10.1016/j.orgel.2021.106305
[51] Zheng, Z., Hu, Q., Zhang, S.Q., et al. (2018) A Highly Efficient Non-Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by Aine-Tuned Hole-Transporting Layer. Advanced Materials, 30, Article ID: 1801801.
https://doi.org/10.1002/adma.201801801
[52] Kim, S.H., Park, B.M., Kim, G.P., et al. (2014) Annealing Effects of Au Nanoparticles Embedded PEDOT:PSS in Bulk Heterojunction Organic Solar Cells. Synthetic Metals, 192, 101-105.
https://doi.org/10.1016/j.synthmet.2014.03.019
[53] Nazim, M., Sadia, A., Shaheer, A.M., et al. (2018) D-π-A-π-D Type Thiazolo[5,4-D]Thiazole-Core Organic Chromophore and Graphene Modified PEDOT:PSS Buffer Layer for Efficient Bulk Heterojunction Organic Solar Cells. Solar Energy, 171, 366-373.
https://doi.org/10.1016/j.solener.2018.06.087
[54] Li, Q., Sun, Y., Yang, C., et al. (2020) Optimizing the Component Ratio of PEDOT:PSS by Water Rinse for High Efficiency Organic Solar Cells over 16.7%. Science Bulletin, 65, 747-752.
https://doi.org/10.1016/j.scib.2019.12.021
[55] Nguyen, D.C.T., et al. (2021) Use of Modified PEDOT:PSS/Graphene Oxide Dispersions as a Hole Transport Layer for Inverted Bulk-Heterojunction Organic Solar Cells. Organic Electronics, 100, Article ID: 106388.
https://doi.org/10.1016/j.orgel.2021.106388
[56] Mohammad, T., Bharti, V., Kumar, V., et al. (2019) Spray Coated Europium Doped PEDOT:PSS Anode Buffer Layer for Organic Solar Cell: The Role of Electric Field during Deposition. Organic Electronics, 66, 242-248.
https://doi.org/10.1016/j.orgel.2018.12.034
[57] Li, Z., Meng, W., Tong, J., et al. (2015) A Nonionic Surfactant Simultaneously Enhancing Wetting Property and Electrical Conductivity of PEDOT:PSS for Vacuum-Free Organic Solar Cells. Solar Energy Materials and Solar Cells, 137, 311-318.
https://doi.org/10.1016/j.solmat.2015.02.024
[58] Jdigoras, J., Guillen, E., Ramos, F.J., et al. (2014) Highly Efficient Flexible Cathodes for Dye Sensitized Solar Cells to Complement Pt@ TCO Coatings. Journal of Materials Chemistry A, 2, 3175-3181.
https://doi.org/10.1039/c3ta13524a
[59] Singh, T.J., Singh, S., Islam, S.M., et al. (2019) Flexible Organic Solar Cells with Graphene/PEDOT:PSS Schottky Junction on PET Substrates. Optik, 181, 984-992.
https://doi.org/10.1016/j.ijleo.2018.12.179
[60] Kim, D.H., Lee, D.J., Kim, B., et al. (2020) Tailoring PEDOT:PSS Polymer Electrode for Solution-Processed Inverted Organic Solar Cells. Solid-State Electronics, 169, Article ID: 107808.
https://doi.org/10.1016/j.sse.2020.107808
[61] Peh, R.J., Lu, Y., Zhao, F., et al. (2011) Vacuum-Free Processed Transparent Inverted Organic Solar Cells with Spray-Coated PEDOT:PSS Anode. Solar Energy Materials & Solar Cells, 95, 3579-3584.
https://doi.org/10.1016/j.solmat.2011.09.018
[62] Hu, Y.C., Tang, Y., Zhang, Z.H., et al. (2022) Improving the Efficiency of Inverted Perovskite Solar Cells by Bis(Acetylacetonato) Dioxomolybdenum(VI)-Doped PEDOT:PSS. Materials Letters, 306, Article ID: 130911.
https://doi.org/10.1016/j.matlet.2021.130911
[63] Marcial, F., Mazzolini, E., Sondergaard, R.R., et al. (2020) Flexible ITO-Free Roll-Processed Large-Area Nonfullerene Organic Solar Cells Based on P3HT:O-IDTBR. Journal of Engineering, 14, Article ID: 034067.