电催化NO与碳氧化物共还原合成尿素的理论研究进展
Advances in Theoretical Research on Synthesis of Urea by Electrocatalytic Co-Reduction of Nitric Oxide and Carbon Oxides
DOI: 10.12677/AAC.2024.141004, PDF, 下载: 71  浏览: 123 
作者: 张翔宇, 赵云彩:浙江师范大学含氟新材料研究所,先进催化材料教育部重点实验室,浙江 金华
关键词: 电催化尿素合成C-N耦联理论化学Electrocatalysis Urea Synthesis C-N Coupling Theoretical Chemistry
摘要: 电化学方法由于能在温和条件下进行、低耗、清洁,成为解决人类所面临的能源和环境问题的有效手段之一。一氧化氮(NO)造成了严重的环境问题,碳氧化合物(如CO2和CO)是主要的空气污染物,科学家一直致力于研究有效的方法减少或转化这些有毒害的氧化物。在环境条件下,通过一氧化氮和碳氧化合物的电化学共还原合成尿素可以实现碳/氮中和、减轻环境污染,是一种环境友好策略,具有广阔应用前景。近期虽然越来越多的研究在电化学尿素合成方面取得了一些突破,但存在法拉第效率低、尿素产率不高、C-N耦联反应机理不清楚等问题,这些问题制约其大规模应用。本文从实验化学和理论计算化学领域,综述了环境条件下基于NO和碳氧化合物电化学尿素合成的最新进展,并从理论化学层面揭示C-N耦联反应机理,为之后该反应提供实验与理论的指导与支撑。
Abstract: Electrochemical methods have become one of the effective means of solving the energy and envi-ronmental problems facing mankind due to their ability to be carried out under mild conditions, low consumption and cleanliness. Nitric oxide (NO) causes serious environmental problems, and carbon oxides (e.g., CO2 and CO) are major air pollutants, and scientists have been working on effec-tive methods to reduce or convert these toxic oxides. The synthesis of urea by electrochemical co-reduction of nitric oxide and carbon oxides under ambient conditions can achieve Car-bon/Nitrogen neutralisation and reduce environmental pollution, which is an environmentally friendly strategy with broad application prospects. Recently, although more and more researches have made some breakthroughs in electrochemical urea synthesis, there are problems such as low Faraday efficiency, low urea yield, and unclear mechanism of C-N coupling reaction, which restrict its large-scale application. In this paper, we review the recent progress of electrochemical urea synthesis based on NO and carbon-oxygen compounds under ambient conditions from the fields of experimental chemistry and theoretical computational chemistry, and reveal the mechanism of the C-N coupling reaction from the level of theoretical chemistry, so as to provide experimental and theoretical guidance and support for this reaction afterwards.
文章引用:张翔宇, 赵云彩. 电催化NO与碳氧化物共还原合成尿素的理论研究进展[J]. 分析化学进展, 2024, 14(1): 29-38. https://doi.org/10.12677/AAC.2024.141004

参考文献

[1] Chen, C., Zhu, X., Wen, X., Zhou, Y., Zhou, L., Li, H., et al. (2020) Coupling N2 and CO2 in H2O to Synthesize Urea under Ambient Conditions. Nature Chemistry, 128, 717-724.
https://doi.org/10.1038/s41557-020-0481-9
[2] Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z. and Winiwarter, W. (2008) How a Century of Ammonia Synthesis Changed the World. Nature Geoscience, 110, 636-639.
https://doi.org/10.1038/ngeo325
[3] Tang, C., Zheng, Y., Jaroniec, M. and Qiao, S.-Z. (2021) Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie International Edition, 6036, 19572-19590.
https://doi.org/10.1002/anie.202101522
[4] Glibert, P.M., Harrison, J., Heil, C. and Seitzinger, S. (2006) Escalating Worldwide Use of Urea—A Global Change Contributing to Coastal Eutrophication. Biogeochemistry, 773, 441-463.
https://doi.org/10.1007/s10533-005-3070-5
[5] Lim, J., Fernández, C.A., Lee, S.W. and Hatzell, M.C. (2021) Ammonia and Nitric Acid Demands for Fertilizer Use in 2050. ACS Energy Letters, 610, 3676-3685.
https://doi.org/10.1021/acsenergylett.1c01614
[6] Huang, Y., Wang, Y., Wu, Y., Yu, Y. and Zhang, B. (2022) Electro-catalytic Construction of the C-N Bond from the Derivates of CO2 and N2. Science China Chemistry, 652, 204-206.
https://doi.org/10.1007/s11426-021-1173-8
[7] Wang, Y., Wang, C., Li, M., Yu, Y. and Zhang, B. (2021) Nitrate Elec-troreduction: Mechanism Insight, in Situ Characterization, Performance Evaluation, and Challenges. Chemical Society Reviews, 5012, 6720-6733.
https://doi.org/10.1039/D1CS00116G
[8] Rollinson, A.N., Jones, J., Dupont, V. and Twigg, M.V. (2011) Urea as a Hydrogen Carrier: A Perspective on Its Potential for Safe, Sustainable and Long-Term Energy Supply. Energy & Environmental Science, 44, 1216-1224.
https://doi.org/10.1039/c0ee00705f
[9] Comer, B.M., Fuentes, P., Dimkpa, C.O., Liu, Y.-H., Fernandez, C.A., Arora, P., et al. (2019) Prospects and Challenges for Solar Fertilizers. Joule, 37, 1578-1605.
https://doi.org/10.1016/j.joule.2019.05.001
[10] Ma, Q., Yu, Y., Sindoro, M., Fane, A.G., Wang, R. and Zhang, H. (2017) Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage. Advanced Materials, 2913, Article ID: 1605361.
https://doi.org/10.1002/adma.201605361
[11] Fan, L., Xia, C., Zhu, P., Lu, Y. and Wang, H. (2020) Electrochemical CO2 Reduction to High-Concentration Pure Formic Acid Solutions in an All-Solid-State Reactor. Nature Communications, 111, Ar-ticle No. 3633.
https://doi.org/10.1038/s41467-020-17403-1
[12] Kandemir, T., Schuster, M.E., Senyshyn, A., Behrens, M. and Schlögl, R. (2013) The Haber-Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under Working Condi-tions. Angewandte Chemie International Edition, 5248, 12723-12726.
https://doi.org/10.1002/anie.201305812
[13] Yuan, M., Chen, J., Xu, Y., Liu, R., Zhao, T., Zhang, J., Ren, Z., Liu, Z., Streb, C., et al. (2021) Highly Selective Electroreduction of N2 and CO2 to Urea over Artificial Frustrated Lewis Pairs. Energy & Environmental Science, 1412, 6605-6615.
https://doi.org/10.1039/D1EE02485J
[14] Kayan, D.B. and Köleli, F. (2016) Simultaneous Electrocatalytic Reduction of Dinitrogen and Carbon Dioxide on Conducting Polymer Electrodes. Applied Catalysis B: Environmental, 181, 88-93.
https://doi.org/10.1016/j.apcatb.2015.07.045
[15] Jiang, M., Zhu, Q., Song, X., Gu, Y., Zhang, P., Li, C., Cui, J., Ma, J., Tie, Z. and Jin, Z. (2022) Batch-Scale Synthesis of Nanoparticle-Agminated Three-Dimensional Porous Cu@Cu2O Micro-spheres for Highly Selective Electrocatalysis of Nitrate to Ammonia. Environmental Science & Technology, 5614, 10299-10307.
https://doi.org/10.1021/acs.est.2c01057
[16] Shibata, M., Yoshida, K. and Furuya, N. (1995) Electrochemical Synthesis of Urea on Reduction of Carbon Dioxide with Nitrate and Nitrite Ions Using Cu-Loaded Gas-Diffusion Electrode. Journal of Electroanalytical Chemistry, 3871, 143-145.
https://doi.org/10.1016/0022-0728(95)03992-P
[17] Shibata, M. and Furuya, N. (2001) Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes: Part VI. Simultaneous Reduction of Carbon Dioxide and Nitrite Ions with Various Metallophthalocyanine Catalysts. Journal of Electroanalytical Chemistry, 5071, 177-184.
https://doi.org/10.1016/S0022-0728(01)00363-1
[18] Rosca, V., Duca, M., De Groot, M.T. and Koper, M.T.M. (2009) Nitrogen Cycle Electrocatalysis. Chemical Reviews, 1096, 2209-2244.
https://doi.org/10.1021/cr8003696
[19] Yuan, M., Chen, J., Bai, Y., Liu, Z., Zhang, J., Zhao, T., Wang, Q., Li, S., He, H. and Zhang, G. (2021) Unveiling Electrochemical Urea Synthesis by Co-Activation of CO2 and N2 with Mott-Schottky Heterostructure Catalysts. Angewandte Chemie International Edition, 6019, 10910-10918.
https://doi.org/10.1002/anie.202101275
[20] Jia, H.-P. and Quadrelli, E.A. (2014) Mecha-nistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. Chemical Society Reviews, 432, 547-564.
https://doi.org/10.1039/C3CS60206K
[21] Wang, J., Yao, Z., Hao, L. and Sun, Z. (2022) Electrocatalytic Coupling of CO2 and N2 for Urea Synthesis. Current Opinion in Green and Sustainable Chemistry, 37, Article ID: 100648.
https://doi.org/10.1016/j.cogsc.2022.100648
[22] Huang, Y., Yang, R., Wang, C., Meng, N., Shi, Y., Yu, Y. and Zhang, B. (2022) Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 71, 284-291.
https://doi.org/10.1021/acsenergylett.1c02471
[23] Long, J., Chen, S., Zhang, Y., Guo, C., Fu, X., Deng, D. and Xiao, J. (2020) Direct Electrochemical Ammonia Synthesis from Nitric Oxide. Angewandte Chemie International Edition, 5924, 9711-9718.
https://doi.org/10.1002/anie.202002337
[24] Niu, H., Zhang, Z., Wang, X., Wan, X., Kuai, C. and Guo, Y. (2021) A Fea-sible Strategy for Identifying Single-Atom Catalysts toward Electrochemical NO-To-NH3 Conversion. Small, 1736, 2102396.
https://doi.org/10.1002/smll.202102396
[25] Liu, W., Zhai, P., Li, A., Wei, B., Si, K., Wei, Y., et al. (2022) Electrochem-ical CO2 Reduction to Ethylene by Ultrathin CuO Nanoplate Arrays. Nature Communications, 131, 1877.
https://doi.org/10.1038/s41467-022-29428-9
[26] Su, X., Jiang, Z., Zhou, J., Liu, H., Zhou, D., Shang, H., et al. (2022) Complementary Operando Spectroscopy Identification of In-Situ Generated Metastable Charge-Asymmetry Cu2-CuN3 Clusters for CO2 Reduction to Ethanol. Nature Communications, 131, Article No. 1322.
https://doi.org/10.1038/s41467-022-29035-8
[27] Davies, B.J.V., Šarić, M., Figueiredo, M.C., Schjødt, N.C., Dahl, S., Moses, P.G., et al. (2019) Electrochemically Generated Copper Carbonyl for Selective Dimethyl Carbonate Synthesis. ACS Ca-talysis, 92, 859-866.
https://doi.org/10.1021/acscatal.8b03682
[28] Jouny, M., Lv, J.-J., Cheng, T., Ko, B.H., Zhu, J.-J., Goddard, W.A. and Jiao, F. (2019) Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis. Nature Chemistry, 119, 846-851.
https://doi.org/10.1038/s41557-019-0312-z
[29] Lv, C., Lee, C., Zhong, L., Liu, H., Liu, J., Yang, L., et al. (2022) A De-fect Engineered Electrocatalyst That Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 165, 8213-8222.
https://doi.org/10.1021/acsnano.2c01956
[30] Leverett, J., Tran-Phu, T., Yuwono, J.A., Kumar, P., Kim, C., Zhai, Q., et al. (2022) Tuning the Coordination Structure of Cu-N-C Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO2 and NO3− to Urea. Advanced Energy Materials, 1232, Article ID: 2201500.
https://doi.org/10.1002/aenm.202201500
[31] Liu, X., Kumar, P.V., Chen, Q., Zhao, L., Ye, F., Ma, X., et al. (2022) Carbon Nanotubes with Fluorine-Rich Surface as Metal-Free Electrocatalyst for Effective Synthesis of Urea from Nitrate and CO2. Applied Catalysis B: Environmental, 316, Article ID: 121618.
https://doi.org/10.1016/j.apcatb.2022.121618
[32] Cao, N., Quan, Y., Guan, A., Yang, C., Ji, Y., Zhang, L. and Zheng, G. (2020) Oxygen Vacancies Enhanced Cooperative Electrocat-alytic Reduction of Carbon Dioxide and Nitrite Ions to Urea. Journal of Colloid and Interface Science, 577, 109-114.
https://doi.org/10.1016/j.jcis.2020.05.014
[33] Liu, S., Yin, S., Wang, Z., Xu, Y., Li, X., Wang, L. and Wang, H. (2022) AuCu Nanofibers for Electrosynthesis of Urea from Carbon Dioxide and Nitrite. Cell Reports Physical Science, 35, Article ID: 100869.
https://doi.org/10.1016/j.xcrp.2022.100869
[34] Wu, W., Yang, Y., Wang, Y., Lu, T., Dong, Q., Zhao, J., et al. (2022) Boosting Electrosynthesis of Urea from N2 and CO2 by Defective Cu-Bi. Chem Catalysis, 211, 3225-3238.
https://doi.org/10.1016/j.checat.2022.09.012
[35] Yuan, M., Chen, J., Bai, Y., Liu, Z., Zhang, J., Zhao, T., et al. (2021) Electrochemical C-N Coupling with Perovskite Hybrids toward Efficient Urea Synthesis. Chemical Science, 1217, 6048-6058.
https://doi.org/10.1039/D1SC01467F
[36] Jiao, D., Dong, Y., Cui, X., Cai, Q., Cabrera, C.R., Zhao, J. and Chen, Z. (2023) Boosting the Efficiency of Urea Synthesis via Cooperative Electroreduction of N2 and CO2 on MoP. Journal of Materi-als Chemistry A, 111, 232-240.
https://doi.org/10.1039/D2TA07531H
[37] Wan, H., Wang, X., Tan, L., Filippi, M., Strasser, P., Rossmeisl, J. and Bag-ger, A. (2023) Electrochemical Synthesis of Urea: Co-Reduction of Nitric Oxide and Carbon Monoxide. ACS Catalysis, 133, 1926-1933.
https://doi.org/10.1021/acscatal.2c05315
[38] Saka, C. (2022) Phosphorus and Sulphur-Doped Microalgae Carbon as a Highly Active Metal-Free Catalyst for Efficient Hydrogen Release in NaBH4 Methanolysis. Fuel, 309, Article ID: 122183.
https://doi.org/10.1016/j.fuel.2021.122183
[39] Zhao, S., Lu, X., Wang, L., Gale, J. and Amal, R. (2019) Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Advanced Materials, 3113, Article ID: 1805367.
https://doi.org/10.1002/adma.201805367
[40] Zhang, J., Guo, Y., Shang, B., Fan, T., Lian, X., Huang, P., Dong, Y., Chen, Z. and Yi, X. (2021) Unveiling the Synergistic Effect between Graphitic Carbon Nitride and Cu2O toward CO2 Electro-reduction to C2H4. ChemSusChem, 143, 929-937.
https://doi.org/10.1002/cssc.202002427
[41] Cao, Y., Meng, Y., Wu, Y., Huang, H., Zhong, W., Shen, Z., Xia, Q., Wang, Y. and Li, X. (2022) Metal-Free Boron Nanosheet as “Buffer Electron Pool” for Urea and Ethanol Synthesis via C-N and C-C Coupling. Journal of Materials Chemistry A, 1044, 23843-23853.
https://doi.org/10.1039/D2TA06739K