|
[1]
|
B. Lange, T. Rujan, W. Martin, et al. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across ge- nomes. Proceedings of the National Academy of Sciences of USA, 2000, 97: 13172-13177.
|
|
[2]
|
陈旭微, 杨玲, 章艺. 类脂对植物生长和发育的作用[J]. 植物生理学通讯, 2004, 40(3): 373-378.
|
|
[3]
|
王文杰, 贺海升, 关宇等. 丙酮和二甲基亚砜法测定植物叶绿素和类胡萝卜素的方法学比较[J]. 植物研究, 2009, 2: 224- 229.
|
|
[4]
|
P. Davies. 植物激素: 合成、信号转导和作用[M]. 中国农业大学出版社, 2008: 3-14.
|
|
[5]
|
H. Woerdenbag, J. Lüers, W. van Uden, et al. Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua L. Plant Cell, Tissue and Organ Culture, 1993, 32: 247- 257.
|
|
[6]
|
M. Wildung, R. Croteau. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. The Journal of Biological Chemistry, 1996, 271: 9201-9204.
|
|
[7]
|
M. Rohmer, M. Knani, P. Simonin, et al. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to iso- pentenyl diphosphate. Biochemical Journal, 1993, 295: 517- 524.
|
|
[8]
|
D. Banthorpe, B. Charlwood and M. Francis. Biosynthesis of monoterpenes. Chemical Reviews, 1972, 72: 115-155.
|
|
[9]
|
T. Bach. Some new aspects of isoprenoid biosynthesis in plants: A review. Lipids, 1995, 30: 191-202.
|
|
[10]
|
M. Sapir-Mir, A. Mett, E. Belausov, et al. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is com- partmentalized to peroxisomes. Plant Physiology, 2008, 148(3): 1219-1228.
|
|
[11]
|
M. Rohmer. The discovery of a mevalonate-independent path- way for isoprenoid biosynthesis in bacteria, algae and higher plants. Natural Product Reports, 1999, 16: 565-574.
|
|
[12]
|
J. Schwender, C. Gemünden and H. Lichtenthaler. Chlorophyta exclusively use the 1-deoxyxululose 5-phosphate/2-C-methyl- erythritol-4-phosphate pathway for the biosynthesis of isopre- noids. Planta, 2001, 212: 416-423.
|
|
[13]
|
T. Bach, A. Boronat, C. Caelles, et al. Aspects related to mevalonate biosynthesis in plants. Lipids, 1991, 26: 637-648.
|
|
[14]
|
J. McGarvey, R. Croteau. Terpenoid metabolism. The Plant Cell, 1995, 7: 1015-1026.
|
|
[15]
|
A. Lopes, D. Baldoqui, S. López, et al. Biosynthetic origins of the isoprene units of gaudichaudianic acid in Piper gaudichau- dianum (Piperaceae). Phytochemistry, 2007, 68: 2053-2058.
|
|
[16]
|
D. Choi, B. Ward and R. Bostock. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arechidonic acid. Plant Cell, 1992, 4: 1333-1344.
|
|
[17]
|
M. Rohmer, M. Knani, P. Simonin, et al. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to iso- pentenyl diphosphate. Biochemical Journal, 1993, 295(2): 517- 524.
|
|
[18]
|
Z. Liao, M. Chen, Y. Gong, et al. Isoprenoid biosynthesis in plants: Pathway, genes, regulation and metabolic engineering. Journal of Bio-Sciences, 2006, 6: 209-219.
|
|
[19]
|
W. Eisenreicha, A. Bachera, D. Arigonib, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences, 2004, 61: 1401-1426.
|
|
[20]
|
S. Takahashi, T. Kuzuyama, H. Watanabe, et al. 1-deoxy-D- xylulose-5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol-4-phosphate in an alternative nonme- valonate pathway for terpenoid biosynthesis. Proceedings of the National Academy of Sciences of USA, 1998, 95: 9879-9884.
|
|
[21]
|
金蓉, 朱长青, 徐昌杰. 1-脱氧木酮糖-5-磷酸合成酶(DXS)及其编码基因[J]. 细胞生物学杂志, 2007, 29(5): 706-712.
|
|
[22]
|
兰文智, 余龙江, 蔡永君等. 类异戊二烯非甲羟戊酸代谢途径的分子生物学研究进展[J]. 西北植物学报, 2001, 21(5): 1039-1047.
|
|
[23]
|
罗永明, 刘爱华, 李琴等. 植物萜类化合物的生物合成途径及其关键酶的研究进展[J]. 江西中医学院学报, 2003, 15(1): 45-51.
|
|
[24]
|
D. McCaskill, R. Croteau. Monoterpene and sesquiterpene bio- synthesis in glandular trichomes of peppermint (Mentha x pi- perita) rely exclusively on plastid-derived isopentenyl diphos- phate. Planta, 2004, 197(1): 49-56.
|
|
[25]
|
K. Adam, J. Zapp. Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry, 1998, 48(6): 953-959.
|
|
[26]
|
M. Towler, P. Weathers. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmeva- lonate pathways. Plant Cell Reports, 2007, 26: 2129-2136.
|
|
[27]
|
N. Schramek, H. Wang, W. Römisch-Margl, et al. Artemisinin biosynthesis in growing plants of Artemisia annua A (13)CO(2) study. Phytochemistry, 2010, 71: 179-187.
|
|
[28]
|
O. Laule, A. Furholz, H. Chang, et al. Crosstalk between cytosolic and plastidial pathways of isopreneoid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 2003, 100(11): 6866-6871.
|
|
[29]
|
J. Bick, B. Lange. Metabolic crosstalk between cytosolic and plastidial pathways of isopreneoid biosynthesis: Unidirectional transports of intermediates across the chloroplast envelope mem- brane. Archives of Biochemistry and Biophysics, 2003, 415(2): 146-154.
|
|
[30]
|
M. Gutierrez-Nava, C. Gillmor, L. Jimenez, et al. Chloroplast biogenesis genes act cell and noncell autonomously in early chloroplast development. Plant Physiology, 2004, 135: 471-482.
|
|
[31]
|
M. Rodrıguez-Concepcion, O. Fores, J. Martınez-Garcıa, et al. Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell, 2004, 16: 144-156.
|
|
[32]
|
L. Carretero-Paulet, A. Cairo, P. Botella-Pavia, et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Ara- bidopsis plants overexpressing deoxyxylulose 5-phosphate re- ductoisomerase. Plant Molecular Biology, 2006, 62: 683-695.
|
|
[33]
|
S. Sauret-Gueto, P. Botella-Pavia, U. Flores-Perez, et al. Plastid cues posttranscriptionally regulate the accumulation of key en- zymes of the methylerythritol phosphate pathway in Arabidopsis. Plant Physiology, 2006, 141: 75-84.
|
|
[34]
|
U. Flores-Perez, S. Sauret-Gueto, E. Gas, et al. A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic en- zymes in arabidopsis plastids. Plant Cell, 2008, 20: 1303-1315.
|
|
[35]
|
J. Bohlmann, D. Martin, N. Oldham, et a1.Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characteri- zation and functional expression of a myrcene/(E)-13-ocimene synthase. Archives of Biochemistry and Biophysics, 2000, 375(2): 261-269.
|
|
[36]
|
徐应文, 吕季娟, 吴卫等. 植物单萜合酶研究进展[J]. 生态学报, 2009, 29(6): 3188-3197.
|
|
[37]
|
H. Yao, Y. Gong, K. Zuo, et al. Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1- deoxy-D-xylulose-5-phosphate reductoisomerase from cam pto- theca acuminate. Journal of Plant Physiology, 2008, 165(2): 203- 213.
|
|
[38]
|
L. Carretero-Paulet, I. Ahumada, N. Cunillera, et al. Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase, the first com- mitted enzyme of the 2-C-methyl-D-erythritol-4-phosphate path- way. Plant Physiology, 2002, 129(3): 1581-1591.
|
|
[39]
|
J. Hans, B. Hause, D. Stack, et al. Cloning, characterization and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose-5-phosphate reductoisomerase in arbuscule containing cells ofmaize. Plant Physiology, 2004, 134(2): 614-624.
|
|
[40]
|
S. Mahmoud, R. Croteau. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxy- xylulose phosphate reductoisomerase and menthofuran synthase. Proceedings of the National Academy of Sciences of USA, 2001, 98: 8915-8920.
|
|
[41]
|
B. Veau, M. Courtois, A. Oudin, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catha- ranthus roseus. Biochimica Biophysica Acta, 2000, 1517: 159- 163.
|
|
[42]
|
贺小青, 方鹏飞. 青蒿素及其衍生物的药理作用[J]. 医药导报, 2006, 25(6): 528-530.
|
|
[43]
|
J. Chappell, F. Wolf, J. Proulx, et al. Is the reaction catalyzed by 3-hydroxyl-3-methylglutaryl coenzyme A reductase rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiology, 1995, 109: 1337-1343.
|
|
[44]
|
王剑文, 邹婷, 张犇. 青蒿素生物合成研究进展[J]. 抗感染药学, 2009, 6(2): 77-82.
|
|
[45]
|
G. Pu, D. Ma, J. Chen, et al. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. Plant Cell Reports, 2009, 28: 1127-1135.
|
|
[46]
|
D. Chen, J. Chen, H. Ye, et al. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate syn- thase gene for artemisinin production. Plant Cell, Tissue and Or- gan Culture, 1999, 57: 157-162.
|
|
[47]
|
D. Chen, H. Ye, G. Li, et al. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciensmediated transformation. Plant Sci- ence, 2000, 155: 179-185.
|
|
[48]
|
L. Feng, R. Yang, X. Yang, et al. Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in trans- genic Artemisia annua. Plant Science, 2009, 177: 57-67.
|
|
[49]
|
V. Martin, D. Pitera, S. Withers, et al. Engineering a mevalonate pathway in Escherich coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796-803.
|
|
[50]
|
J. Newman, J. Marshall, M. Chang, et al. High level production amorpha-4,11-diene in a two-phase partitioning bioreactor of me- tabolically engineered Escherichia coli. Journal of Biotechnol- ogy, 2006, 95(4): 684-691.
|
|
[51]
|
D. Ro, I. Parad, M. Ouellet, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.
|
|
[52]
|
Y. Gong, Z. Liao, B. Guo, et al. Molecular cloning and expres- sion profile analysis of Ginkgo biloba DXS gene encoding 1- deoxy-D-xylulose-5-phosphate synthase, the first committed en- zyme of the 2-C-methyl-D-erythritol-4-phosphate pathway. Plan- ta Medica, 2006, 72: 329-335.
|
|
[53]
|
F. Rohdich, J. Wungsintaweekul, W. Eisenreich, et al. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-D-erythri- tol synthase of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of USA, 2000, 97: 6451-6456.
|
|
[54]
|
王学勇, 崔光红, 黄璐琦等. 丹参4-(5’-二磷酸胞苷)-2-C-甲基-D-赤藓醇激酶的cDNA全长克隆及其诱导表达分析[J]. 药学学报, 2008, 43(12): 1251-1257.
|
|
[55]
|
郑清平, 余龙江, 刘智等. 红豆杉细胞非甲羟戊酸途径关键酶基因dxr的克隆与分析[J]. 生物工程学报, 2004, 4: 548-553.
|
|
[56]
|
O. Expósito, M. Bonfill, M. Onrubia, et al. Effect of taxol feed- ing on taxol and related taxane production in Taxus baccata su- spension cultures. New Biotechnology, 2009, 25(4): 252-259.
|
|
[57]
|
H. Suzuki, L. Achnine, R. Xu, et al. Agenomics approach to the early stages of triterpene saponin biosynthesis in Medicago trun- catula. The Plant Journal, 2002, 32(6): 1033-1048.
|
|
[58]
|
Z. Liao, Q. Tan, Y. R. Chai, et al. Cloning and characterization of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Functional Plant Biology, 2004, 31: 73-81.
|
|
[59]
|
曹小迎, 蒋继宏, 刘群等. 大戟甲羟戊酸途径关键酶基因hmgr的克隆与分析[J]. 武汉植物学研究, 2007, 25(2): 123- 126.
|
|
[60]
|
杜鹃. 蹄叶橐吾萜类化合物合成相关基因克隆及功能研究[D]. 吉林大学, 2007.
|
|
[61]
|
D. Choi, J. Jung, Y. Ha, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabo- lites. Plant Cell Reports, 2005, 23(8): 557-566.
|
|
[62]
|
J. Seo, J. Jeong, C. Shin, et al. Overexpression of squalene syn- thase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry, 2005, 66(8): 869-877.
|