循环游离DNA在常见肿瘤中的临床应用进展
Advances in the Clinical Application of Circulating Cell-Free DNA in Common Tumors
DOI: 10.12677/MD.2024.141006, PDF, HTML, XML, 下载: 46  浏览: 84 
作者: 赵成俊, 张灵强*:青海大学附属医院肝胆胰外科,青海 西宁
关键词: 循环游离DNA循环肿瘤DNACirculating Cell-Free DNA Circulating Tumor DNA
摘要: 循环游离DNA (cell-free DNA, cfDNA)容易采集和无创的优点使其在肿瘤早期诊断、良恶性鉴别、疗效检测、预后评价等临床应用中受到广泛的关注。此外,cfDNA还可以反映肿瘤大小、肿瘤转移等。为此,本文综述了cfDNA的临床应用,以期为临床疾病的诊断、疗效分析提供帮助。
Abstract: The advantages of circulating cell-free DNA (cfDNA) are easy to collect and non-invasive, which has attracted extensive attention in clinical applications such as early tumor diagnosis, benign and ma-lignant identification, efficacy detection, and prognosis evaluation. In addition, cfDNA can also re-flect tumor size, tumor metastasis, etc. Therefore, this article reviews the clinical application of cfDNA, in order to provide help for the diagnosis and efficacy analysis of clinical diseases.
文章引用:赵成俊, 张灵强. 循环游离DNA在常见肿瘤中的临床应用进展[J]. 医学诊断, 2024, 14(1): 39-44. https://doi.org/10.12677/MD.2024.141006

1. 引言

液体活检利用外周循环血液代替组织标本进行检测,成为近年来的研究热点。1948年,Mandel首次报告了人类血浆中存在循环游离DNA (cell-free DNA, cfDNA),由于缺乏高效的检测方法,使得相关研究较少,直到1989年,研究者发现cfDNA是肿瘤本身产生的 [1] ,这对cfDNA的研究奠定了基础。cfDNA是存在于体液中的小核酸片段。cfDNA作为一种无创液体活检技术,其检测具有操作简单、实时性、易于取样(可重复取样)、灵敏度高、创伤小等优点,广泛应用于恶性肿瘤、产前筛查、心血管疾病、移植医学、自身免疫性疾病、寄生虫病等疾病的早期筛查和病情评估。

2. cfDNA的来源

cfDNA是一种血液或体液中游离于细胞之外的DNA,这种cfDNA包含双链脱氧核苷酸片段,分子量低,浓度低 [1] [2] ,存在于全血的无细胞成分中,如血浆、血清和尿液等 [3] 。

3. cfDNA的检测

cfDNA的检测分为以DNA浓度为主的定量检测和以肿瘤基因特异性改变为主的定性检测 [4] 。用于血清中cfDNA定量检测的方法主要有放射免疫法、荧光染料法(SYBR、Greenl、PicoGreen、Hoechst 33258等)、核酸凝胶染色法、荧光定量聚合酶链反应(PCR)等 [5] [6] 。其中,以定量RT-PCR为基础的一系列衍生技术的应用,不仅能够对血液、尿液中的cfDNA浓度及完整性作出精准的检测,而且还可以对基因的遗传学改变进行定性分析,目前临床主要开展的定性检测包括基因突变、甲基化异常、微卫星不稳定(MSI)和杂合性缺失(LOH)及染色体重排等。除此以外,新一代高通量测序(next-generation sequence, NGS)已被用于检测cfDNA,包括全基因组测序、全外显子组测序等 [7] 。

4. cfDNA在肿瘤中的应用

近几年,高通量测序技术在临床中的研究越来越多,它可以很快获得cfDNA的浓度、完整度及基因突变等一系列信息,使得cfDNA在恶性肿瘤的早期诊断、疗效判定和药物治疗等方面的研究逐渐清晰,为恶性肿瘤的诊断和治疗给与了新的途径 [8] [9] 。cfDNA的初步探索主要用于分析cfDNA浓度水平与肿瘤的相关性,肿瘤病人血清中的cfDNA含量约为正常人的10倍,引发了科研人员对cfDNA与恶性肿瘤相关性的研究,成为了现在的热点。该研究陆续在结直肠癌、肺癌、乳腺癌的血液中得以证实,血清中的cfDNA含量还可以反映出肿瘤的大小、分期、分级等信息,另外,cfDNA与肿瘤细胞DNA具有高度的一致性,能够客观地反映肿瘤细胞的遗传信息,肿瘤的特异性变化如微卫星灶改变、DNA超甲基化特别是原癌基因或抑癌基因突变能够直接反映肿瘤的发生、发展 [10] [11] [12] 。cfDNA的含量升高、降低或者特异性改变都可以为恶性肿瘤的早期诊断提供另一种新的途径。

1) 肝癌

全世界范围内原发性肝癌发病率位于恶性肿瘤第6位,死亡率位于第2位,约55%新发病例发生在我国 [13] 。原发性肝癌大部分是肝细胞癌,治疗方式有手术切除、介入治疗、分子靶向药物治疗、放射治疗、免疫治疗等。随着医疗水平的不断发展,细胞分子水平的治疗在小肝癌、中晚期肝癌治疗中的地位日趋重要,肝癌根治性治疗成为了可能。由于受放疗敏感性和耐受性的影响,少部分病人治疗效果不好。另外,血清甲胎蛋白(AFP)在原发性肝癌的早期诊断、治疗效果分析中有很大的意义,但它诊断的灵敏度和特异度还需要提高 [14] 。

循环肿瘤DNA (circulating tumor DNA, ctDNA)是目前科研人员在cfDNA研究领域中研究最多的部分,ctDNA主要来自坏死或凋亡的肿瘤细胞 [15] 。Xu [16] 等构建出BMPR1A等10个甲基化标志物的诊断预测模型,该模型在715例肝癌患者和560名健康对照者的训练集中对肝癌的敏感度和特异度高达87.5%和94.3%,在383例肝癌患者和275例健康对照的验证集中敏感度和特异度达83.3%和90.5%。另外,Xu [16] 等建立区分肝病和肝癌模型的综合诊断评分“CD-SCORE”,有效地将肝癌患者与病毒性肝炎患者、脂肪肝患者以及健康对照者区分开来。由此可见,cfDNA甲基化可能是液体活检中诊断早期肝癌更为有效的诊断标志物。Cohen [17] 等将8种血清学标志物与16种cfDNA肿瘤相关基因相结合,建立的Cancer Seek诊断模型已证明在早期肝癌的诊断中具有98%的敏感度和大于99%的特异度。

2) 胃癌

进展期胃癌是胃癌的常见临床类型,单纯手术治疗效果差,容易复发转移,临床上仍以化疗或联合分子靶向治疗为主 [18] 。而目前临床上常用的胃癌血清生物学指标CA199、CA125、CEA等对胃癌的诊断及复发检测有一定帮助,但特异度不高。因此,寻求更为方便和高敏感的胃癌生物学标志物成为研究的热点 [19] 。Fan [20] 等研究结果显示术后辅助化疗和晚期胃癌患者血浆cfDNA浓度均显著高于健康人群,cfDNA浓度与胃癌患者的CA199、CA125、CEA等无关,但晚期胃癌患者cfDNA浓度CEA有关,提示cfDNA浓度具有作为胃癌诊断标志物的潜在价值。Zhang [21] 等也证实了cfDNA用于诊断胃癌时,其灵敏度与特异度高于CA199、CA125、CEA等传统肿瘤标志物。胃癌患者血浆cfDNA浓度显著高于健康人群,与化疗疗效密切相关,可作为胃癌诊断和化疗疗效预测的一个潜在指标,具有重要的临床应用潜力。

3) 结直肠癌

结直肠癌是世界上第三大最常见的癌症类型,也是导致癌症死亡的第四大原因。在晚期癌症患者中,肿瘤细胞和肿瘤邻近组织坏死或凋亡期间释放的cfDNA可导致血浆cfDNA水平显著增加。Frattini [22] 等监测结肠癌中的cfDNA水平,结果显示,术后cfDNA水平显著降低,而cfDNA水平的增加表明疾病恶化进展。因此,cfDNA可用作辅助诊断及监测、预测和评价肿瘤治疗效果。John H [23] 等研究报道1397例结直肠癌患者cfDNA的NGS研究结果,总体而言,在cfDNA中检测到的基因变异频率与在三个基于组织样本的研究中得到结果基本一致。cfDNA反应肿瘤组织突变信息,有报道称在CRC早期阶段,一半以上患者可在血液中检出突变体DNA。Flamini [24] 等对18例Dukes分期为A、B期的CRC患者进行cfDNA检测,其敏感性为80%,且与疾病分期相关。将传统肿瘤标志物CEA和cfDNA联合检测,其敏感性和特异性都升高,分别达88%、90%。cfDNA和结肠镜对大便隐血阳性的结直肠癌高危人群进行筛查,证实cfDNA更适合作为结直肠癌的筛查方法,可以成为结直肠癌诊断重要方法。cfDNA水平的预测能力在预测腺癌方面是令人满意的(AUC 0.709, 95% CI: 0.508~0.909),检测结直肠癌患者外周血中cfDNA为结直肠癌的早期诊断及病情监控提供了新的手段。

4) 胆囊癌

胆囊癌是一种相对罕见但侵袭性极强的恶性肿瘤,占胆道肿瘤的80%~95%。2022年我国胆囊癌发病人数约为3.1万例,死亡人数约为2.5万例。但是,胆囊癌缺乏特异性标志物,即使结合影像、内镜以及肿瘤生物标志物如糖类抗原(CA199)和癌胚抗原(CEA)检测,也很难作出准确诊断,大多数患者确诊时已错过手术治愈时机。因此,胆囊癌的研究目前主要集中在早期诊断生物标志物和治疗靶点的寻找上。Kinugasa [25] 等选取30例初次确诊为胆囊癌的患者进行细胞学检测,并使用NGS分析肿瘤组织和胆汁分离的DNA的49个致癌基因的突变情况。结果表明57.1%的肿瘤组织DNA发生突变,胆汁ctDNA突变率为87.5%,两者突变的符合率为85.7%;细胞学检测与胆汁ctDNA的符合率为87.5%,而细胞学检测和胆汁ctDNA分析的敏感性分别为45.8%和58.3%。提示NGS可在胆汁中检测到肿瘤DNA突变,胆汁液体活检的敏感性优于ERCP细胞学检查,有助于胆囊癌的诊断。

5) 胰腺癌

胰腺癌是一种常见的恶性实体肿瘤,其发病率和死亡率持续升高。由于症状不典型和缺乏有效的筛查工具,许多患者在诊断时已发展到不可切除的状态,据统计只有20%的病例可以切除病灶 [26] 。因此探索胰腺癌诊断和预后相关标志物对于改善胰腺癌患者预后意义重大。Eissa [27] 等抽取39例胰腺癌患者外周cfDNA并行甲基化标记,结果表明ADAMTS1诊断胰腺癌的敏感性和特异性分别为87.2%和95.8%,BNC1为64.1%和93.7%,两者联合时分别为97.3%和91.6% (AUC = 0.95),说明cfDNA在胰腺癌的诊断中具有一定价值。Sikora [28] 等分别研究了胰腺癌组、其他胰腺相关疾病组和健康对照组中cfDNA的含量变化,其中50例PDAC患者cfDNA水平显著高于23例胰腺相关疾病患者(其中胰岛素瘤5例,非瘤性胰腺疾病18例)和23名健康体检者对照人群,P < 0.05。其研究指出,cfDNA的含量可作为一个肿瘤标志物用于胰腺癌患者的早期诊断。与之相似,Singh [29] 等的研究显示,经病理或CT确诊的127例PDAC患者血中的cfDNA含量显著高于25名健康体检者对照组,胰腺癌患者cfDNA的含量平均为71.2 ng/ml,较之于健康对照人群平均34.6 ng/ml,差异有统计学意义,P = 0.034。胰腺癌cfDNA检测是一种微创、较高特异度的“液体活检”技术,不仅能够了解肿瘤特异性的遗传信息的变化,还为疾病的辅助诊断、病情疗效和预后评价等提供依据。

6) 胆管癌

胆管癌是一种恶性程度比较高的肿瘤,起源于胆管上皮组织,在所有胆道肿瘤中其占比达到50%~60%。胆管癌的准确诊断困难,疾病发展迅速,易发生侵袭转移,癌症恶性程度高,患者预后差。其五年生存率仅为5%~15%。临床上,手术是治疗胆管癌的最主要的手段,但是胆管癌解剖位置比较特殊,肿瘤大小较小,很难获取肿瘤组织而且肿瘤异质性特征明显,导致临床诊断准确率较低,手术效果评估困难。目前临床上用于诊断和手术效果评估的肿瘤标志物主要是CA199和CEA,但是敏感性和特异性较低不能满足要求,因此开发非侵入性的诊断及手术效果评估方法尤为重要。有研究 [30] 对来自胆汁的cfDNA进行测序,结果显示96.2%的配对组织中存在致病性肿瘤突变,其中仅31.6%可在血浆中检测到,约一半在胆汁cfDNA中检测到的突变在同一患者的血浆中亦可检测到。由此可见,虽然确诊仍需要组织学诊断,但如组织取样不可行的情况下,胆汁来源的cfDNA可提供一种替代方法。Shen [31] 等对10例胆管肿瘤患者进行的一项前瞻性研究中,利用150个肿瘤相关基因对胆汁cfDNA和肿瘤DNA进行突变变异的比较,发现靶向深度测序可检出胆管癌患者胆汁cfDNA中的突变,使胆汁cfDNA有望成为一种有应用前景的液体活检。

7) 小结

总的来说,未来仍需要大样本量、前瞻性、多中心随机对照实验来验证cfDNA在肿瘤诊疗中的作用,并结合多种cfDNA标记物,提高检测的敏感性和特异性。除此之外,我们还应该加强对cfDNA的基础和技术研究,以及早日达到检测技术标准化。随着对cfDNA检测转化为临床应用的更多努力,相信肿瘤的检测和治疗监测思路会日益丰富,进一步实现个体化医疗和患者利益的提高,为更多的肿瘤患者带来福音。

NOTES

*通讯作者。

参考文献

[1] Cicchillitti, L., Corrado, G., De Angeli, M., et al. (2017) Circulating Cell-Free DNA Content as Blood Based Biomarker in En-dometrial Cancer. Oncotarget, 8, 115230-115243.
https://doi.org/10.18632/oncotarget.23247
[2] Fleischhacker, M. and Schimdt, B. (2007) Circulating Nucleic Acids (CNAs) and Cancer-Survey. Biochimica et Biophysica Acta, 1775, 181-232.
https://doi.org/10.1016/j.bbcan.2006.10.001
[3] Jahr, S., Hentze, H., Englisch, S., et al. (2001) DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Re-search, 61, 1659-1665.
[4] Pinzani, P., Salvianti, F., Zaccara, S., Massi, D., De Giorgi, V., Pazzagli, M. and Orlando, C. (2011) Circulating Cell-Free DNA in Plasma of Melanoma Patients: Qualitative and Quantitative Considerations. Clinica Chim-ica Acta, 412, 2141-2145.
https://doi.org/10.1016/j.cca.2011.07.027
[5] Beau-Faller, M., Gaub, M.P., Schneider, A., Ducrocq, X., Massard, G., Gasser, B., Chenard, M.P., Kessler, R., Anker, P., Stroun, M., Weitzenblum, E., Pauli, G., Wihlm, J.M., Quoix, E. and Oudet, P. (2003) Plasma DNA Microsatellite Panel as Sensitive and Tumor-Specific Marker in Lung Can-cer Patients. International Journal of Cancer, 105, 361-370.
https://doi.org/10.1002/ijc.11079
[6] Liu, P., Liang, H., Xue, L., Yang, C., Liu, Y., Zhou, K. and Jiang, X. (2012) Poten-tial Clinical Significance of Plasma-Based KRAS Mutation Analysis Using the COLD-PCR/TaqMan(®)-MGB Probe Geno-typing Method. Experimental and Therapeutic Medicine, 4, 109-112.
https://doi.org/10.3892/etm.2012.566
[7] Fan, H., Gai, W., Zhang, L., et al. (2021) Parasite Circulating Cell-Free DNA in the Blood of Alveolar Echinococcosis Patients as a Di-agnostic and Treatment-Status Indicator. Clinical Infectious Diseases, 73, E246-E251.
[8] Leon, S.A., Shapiro, B., Sklaroff, D.M., et al. (1977) Free DNA in the Serum of Cancer Patients and the Effect of Therapy. Cancer Research, 37, 646-650.
[9] Shapiro, B., Chakrabarty, M., Cohn, E.M. and Leon, S.A. (1983) Determination of Circulating DNA Levels in Patients with Benign or Malignant Gastrointestinal Disease. Cancer, 51, 2116-2120.
https://doi.org/10.1002/1097-0142(19830601)51:11<2116::AID-CNCR2820511127>3.0.CO;2-S
[10] Park, M.K., Lee, J.C., Lee, J.W. and Hwang, S.J. (2021) Alu Cell-Free DNA Concentration, Alu Index, and LINE-1 Hypomethylation as a Can-cer Predictor. Clinical Biochemistry, 94, 67-73.
https://doi.org/10.1016/j.clinbiochem.2021.04.021
[11] Gezer, U., Bronkhorst, A.J. and Holdenrieder, S. (2022) The Util-ity of Repetitive Cell-Free DNA in Cancer Liquid Biopsies. Diagnostics (Basel), 12, Article No. 1363.
https://doi.org/10.3390/diagnostics12061363
[12] Zhang, Y., Liu, Z., Ji, K., Li, X., Wang, C., Ren, Z., Liu, Y., Chen, X., Han, X., Meng, L., Li, L. and Li, Z. (2021) Clinical Application Value of Circulating Cell-Free DNA in Hepatocellular Carci-noma. Frontiers in Molecular Biosciences, 8, Article ID: 736330.
https://doi.org/10.3389/fmolb.2021.736330
[13] Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2019) Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. International Journal of Cancer, 144, 1941-1953.
https://doi.org/10.1002/ijc.31937
[14] Wang, W. and Wei, C. (2020) Advances in the Early Diagnosis of Hepatocellular Carcinoma. Genes & Diseases, 7, 308-319.
https://doi.org/10.1016/j.gendis.2020.01.014
[15] Siravegna, G., Mussolin, B., Buscarino, M., Corti, G., Cassingena, A., Crisafulli, G., Ponzetti, A., Cremolini, C., Amatu, A., Lauricella, C., Lamba, S., Ho-bor, S., Avallone, A., Valtorta, E., Rospo, G., Medico, E., Motta, V., Antoniotti, C., Tatangelo, F., Bellosillo, B., Veronese, S., Budillon, A., Montagut, C., Racca, P., Marsoni, S., Falcone, A., Corcoran, R.B., Di Nicolantonio, F., Loupakis, F., Siena, S., Sartore-Bianchi, A. and Bardelli, A. (2015) Clonal Evolution and Resistance to EGFR Blockade in the Blood of Colorectal Cancer Patients. Nature Medicine, 21, 795-801.
https://doi.org/10.1038/nm.3870
[16] Xu, R.H., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., Yi, S., Shi, W., Quan, Q., Li, K., Zheng, L., Zhang, H., Caughey, B.A., Zhao, Q., Hou, J., Zhang, R., Xu, Y., Cai, H., Li, G., Hou, R., Zhong, Z., Lin, D., Fu, X., Zhu, J., Duan, Y., Yu, M., Ying, B., Zhang, W., Wang, J., Zhang, E., Zhang, C., Li, O., Guo, R., Carter, H., Zhu, J.K., Hao, X. and Zhang, K. (2017) Circulating Tumour DNA Methylation Markers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Nature Materials, 16, 1155-1161.
https://doi.org/10.1038/nmat4997
[17] Cohen, J.D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L., Douville, C., Javed, A.A., Wong, F., Mattox, A., Hruban, R.H., Wolfgang, C.L., Goggins, M.G., Dal Molin, M., Wang, T.L., Roden, R., Klein, A.P., Ptak, J., Dobbyn, L., Schaefer, J., Silliman, N., Popoli, M., Vogelstein, J.T., Browne, J.D., Schoen, R.E., Brand, R.E., Tie, J., Gibbs, P., Wong, H.L., Mansfield, A.S., Jen, J., Hanash, S.M., Falconi, M., Allen, P.J., Zhou, S., Bettegowda, C., Diaz, L.A., Tomasetti, C., Kinzler, K.W., Vogelstein, B., Lennon, A.M. and Papadopoulos, N. (2018) Detection and Localization of Surgically Resectable Cancers with a Multi-Analyte Blood Test. Science, 359, 926-930.
https://doi.org/10.1126/science.aar3247
[18] Zhang, X.Y. and Zhang, P.Y. (2017) Gastric Cancer: Somatic Genetics as a Guide to Therapy. Journal of Medical Genetics, 54, 305-312.
https://doi.org/10.1136/jmedgenet-2016-104171
[19] Yu, J. and Zheng, W. (2018) An Alternative Method for Screening Gastric Cancer Based on Serum Levels of CEA, CA19-9, and CA72-4. Journal of Gastrointestinal Cancer, 49, 57-62.
https://doi.org/10.1007/s12029-016-9912-7
[20] Fan, Y., Shi, M., Chen, S., Ju, G., Chen, L., Lu, H., Chen, J. and Zheng, S. (2019) Analysis of Serum CfDNA Concentration and Integrity before and after Surgery in Patients with Lung Cancer. Cellular and Molecular Biology (Noisy-Le-Grand), 65, 56-63.
https://doi.org/10.14715/cmb/2019.65.6.10
[21] Zhang, X., Wu, Z., Shen, Q., Li, R., Jiang, X., Wu, J., Li, D., Wang, D., Zou, C., Zhong, Y. and Cheng, X. (2019) Clinical Significance of Cell-Free DNA Concentration and Integrity in Serum of Gas-tric Cancer Patients before and after Surgery. Cellular and Molecular Biology (Noisy-Le-Grand), 65, 111-117.
https://doi.org/10.14715/cmb/2019.65.7.19
[22] Frattini, M., Gallino, G., Signoroni, S., Balestra, D., Lusa, L., Battaglia, L., Sozzi, G., Bertario, L., Leo, E., Pilotti, S. and Pierotti, M.A. (2008) Quantitative and Qualitative Characterization of Plasma DNA Identifies Primary and Recurrent Colorectal Cancer. Cancer Letters, 263, 170-181.
https://doi.org/10.1016/j.canlet.2008.03.021
[23] Strickler, J.H., Loree, J.M., Ahronian, L.G., Parikh, A.R., Niedzwiecki, D., Pereira, A.A.L., McKinney, M., Korn, W.M., Atreya, C.E., Banks, K.C., Nagy, R.J., Meric-Bernstam, F., Lanman, R.B., Talasaz, A., Tsigelny, I.F., Corcoran, R.B. and Kopetz, S. (2018) Genomic Landscape of Cell-Free DNA in Patients with Colo-rectal Cancer. Cancer Discovery, 8, 164-173.
https://doi.org/10.1158/2159-8290.CD-17-1009
[24] Flamini, E., Mercatali, L., Nanni, O., Calistri, D., Nunziatini, R., Zoli, W., Rosetti, P., Gardini, N., Lattuneddu, A., Verdecchia, G.M. and Amadori, D. (2006) Free DNA and Carcinoembryonic Antigen Serum Levels: An Important Combination for Diagnosis of Colorectal Cancer. Clinical Cancer Research, 12, 6985-6988.
https://doi.org/10.1158/1078-0432.CCR-06-1931
[25] Kinugasa, H., Nouso, K., Ako, S., Dohi, C., Matsushita, H., Matsumoto, K., Kato, H. and Okada, H. (2018) Liquid Biopsy of Bile for the Molecular Diagnosis of Gallbladder Cancer. Can-cer Biology & Therapy, 19, 934-938.
https://doi.org/10.1080/15384047.2018.1456604
[26] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[27] Eissa, M.A.L., Lerner, L., Abdelfatah, E., Shankar, N., Canner, J.K., Hasan, N.M., Yaghoobi, V., Huang, B., Kerner, Z., Takaesu, F., Wolfgang, C., Kwak, R., Ruiz, M., Tam, M., Pisanic, T.R., Iacobuzio-Donahue, C.A., Hruban, R.H., He, J., Wang, T.H., Wood, L.D., Sharma, A. and Ahuja, N. (2019) Promoter Methyl-ation of ADAMTS1 and BNC1 as Potential Biomarkers for Early Detection of Pancreatic Cancer in Blood. Clinical Epigenetics, 11, Article No. 59.
https://doi.org/10.1186/s13148-019-0650-0
[28] Sikora, K., Bedin, C., Vicentini, C., Malpeli, G., D’Angelo, E., Speran-dio, N., Lawlor, R.T., Bassi, C., Tortora, G., Nitti, D., Agostini, M., Fassan, M. and Scarpa, A. (2015) Evaluation of Cell-Free DNA as a Biomarker for Pancreatic Malignancies. The International Journal of Biological Markers, 30, E136-E141.
https://doi.org/10.5301/jbm.5000088
[29] Singh, N., Gupta, S., Pandey, R.M., Chauhan, S.S. and Saraya, A. (2015) High Levels of Cell-Free Circulating Nucleic Acids in Pancreatic Cancer Are Associated with Vascular Encasement, Metastasis and Poor Survival. Cancer Investigation, 33, 78-85.
https://doi.org/10.3109/07357907.2014.1001894
[30] Driescher, C., Fuchs, K., Haeberle, L., Goering, W., Frohn, L., Opitz, F.V., Haeussinger, D., Knoefel, W.T., Keitel, V. and Esposito, I. (2020) Bile-Based Cell-Free DNA Analysis Is a Reliable Diagnostic Tool in Pancreatobiliary Cancer. Cancers (Basel), 13, Article No. 39.
https://doi.org/10.3390/cancers13010039
[31] Shen, N., Zhang, D., Yin, L., Qiu, Y., Liu, J., Yu, W., Fu, X., Zhu, B., Xu, X., Duan, A., Chen, Z., Wang, X., Cao, X., Zhao, T., Zhou, Z., Yu, L., Qin, H., Fang, Z., Li, J.Y., Liu, Y., Xiong, L., Yu-an, B., Li, F. and Zhang, Y. (2019) Bile Cell-Free DNA as a Novel and Powerful Liquid Biopsy for Detecting Somatic Variants in Biliary Tract Cancer. Oncology Reports, 42, 549-560.
https://doi.org/10.3892/or.2019.7177