八段锦改善阿尔茨海默病患者认知功能的科学证据
Scientific Evidence of Baduanjin Improving Cognitive Function in Patients with Cognitive Impairment
DOI: 10.12677/OJNS.2024.122032, PDF, HTML, XML, 下载: 55  浏览: 175  科研立项经费支持
作者: 唐琼英, 车土玲:宁德师范学院医学院,福建 宁德;苏裕盛*:宁德师范学院医学院,福建 宁德;宁德师范学院毒物与药物毒理学重点研究室,福建 宁德
关键词: 阿尔茨海默病八段锦认知障碍海马区Alzheimer’s Disease Baduanjin Cognitive Impairment Hippocampus
摘要: 阿尔茨海默病(Alzheimer’s Disease, AD)是一种常见的与年龄相关的神经退行性疾病,其发病特征主要表现为认知功能障碍、语言能力、生活自理能力下降等。AD的发病机制复杂多样,目前尚未研制出治愈AD的药品。因此,非药物干预在治疗AD的过程中逐渐占据重要地位。八段锦主要从身心方面出发,通过心智对大脑的调节,疏通经络,活血化瘀,以动静相兼、柔和缓慢的动作,从而达到加强生理与心理建设的目的。有研究表明八段锦对AD的防治有一定的疗效作用。为探究八段锦对AD患者认知功能影响的作用机制,本文从文献分析出发,综合AD的发病机制与八段锦的功效及作用,发现长期坚持八段锦能改善大脑海马体结构功能,并减缓AD大脑海马体萎缩的速度,增加双侧海马体和前额叶之间静息功能的连接,增大左内侧颞叶的灰质体积,从而改善AD患者大脑的结构和功能,进一步改善AD患者的生活质量认知功能。因此,长期坚持八段锦可能会在一定程度上预防AD的发生,减缓AD的发病。但现有研究尚不能科学、全面地介绍八段锦改善AD的作用机制,未来仍需投入更多的临床试验以提供更权威的报道。
Abstract: Alzheimer’s disease (Alzheimer’s Diseases, AD) is a common neurodegenerative disease associ-ated with age, the onset characteristics mainly for cognitive dysfunction self-care ability, language, life, etc. The pathogenesis of AD is complicated, has been developed to cure AD. Therefore, non-pharmacological interventions gradually play an important role in the treatment of AD. Baduanjin mainly starts from the physical and mental aspects, through the regulation of the mind to the brain, dredging meridians, promoting blood circulation and removing blood stasis, with gentle and slow movements, so as to achieve the purpose of strengthening the physical and psychological construction. Some studies have shown that Baduanjin has a certain curative effect on the prevention and treatment of AD. To explore the mechanism of Baduanjin on cognitive function in patients with AD, based on the literature analysis, this paper summarizes the pathogenesis of AD and the efficacy and role of Baduanjin. It is found that long-term use of Baduanjin can improve the structure and function of the hippocampus, slow down the atrophy of the hip-pocampus, increase the connectivity between the bilateral hippocampus and the prefrontal lobe, and increase the gray matter volume of the left medial temporal lobe, so as to improve the brain structure and function of AD patients. To further improve the quality of life and cognitive func-tion of AD patients. Therefore, longterm adherence to Baduanjin may prevent the occurrence of AD and slow down the onset of AD to a certain extent. However, the existing studies cannot scientifically and comprehensively introduce the mechanism of Baduanjin in improving AD, and more clinical trials are needed to provide more authoritative reports in the future.
文章引用:唐琼英, 车土玲, 苏裕盛. 八段锦改善阿尔茨海默病患者认知功能的科学证据[J]. 自然科学, 2024, 12(2): 278-287. https://doi.org/10.12677/OJNS.2024.122032

1. 引言

阿尔茨海默病(Alzheimer’s Disease, AD)是临床上以认知障碍、执行功能障等全面性失智表现为特征的一种起病隐匿的进行性发展的神经系统退行性疾病。目前,全球约有5000万AD患者,预计这一数字每5年翻一番,到2050年将增加到1.52亿 ‎[1] 。AD的发病机制主要归因于人脑皮质和边缘区域中淀粉样蛋白(Amyloid β-protein, Aβ)斑块的细胞外聚集和由过度磷酸化tau蛋白制成的细胞内神经原纤维缠结 ‎[2] 。随着人口老龄化的增加,中老年人的健康问题正逐步步入大众的视野,引起人们的关注。AD是最常见的失智形式,越来越普遍,并且医疗负担日益加重。人均AD的年度总成本从轻度AD的468.28美元到重度AD的171283.80美元不等。护理费用随疾病严重程度呈非线性上升。正规的护理住宿导致直接成本增加,高达疾病总体经济负担的67.3% ‎[3] 。尽管在过去做出了巨大努力,但AD的认知恶化仍然令人沮丧却又顽固地抵制候选疾病修饰疗法 ‎[4] 。迄今为止,全球尚未有根治的方法,但八段锦是中国传统的轻度至中度气功运动疗法之一,被认为是促进健康的有效方法,可改善认知障碍患者认知功能,且它强调身心联系,深呼吸时的缓慢运动以及精神集中的肌肉伸展,对各种疾病患者也有一定防治效果 ‎[5] 。本文将通过探讨八段锦对阿尔茨海默病患者认知功能的影响展开综述。

2. AD的发病机制

AD是一种遗传性和散发性神经退行性疾病,在其原型表现中引起遗忘性认知障碍,在其不太常见的变体中引起非遗忘性认知障碍 ‎[6] 。目前认为Aβ的异常沉积、tau蛋白假说与神经炎症是AD主要的发病机制。

2.1. 淀粉样蛋白异常沉积

各种淀粉样蛋白聚集体在几种神经退行性疾病的发病机制中的作用错综复杂。一些工作支持淀粉样蛋白聚集体的毒性功能和有害后果,这些聚集物在细胞内积聚以对大脑功能造成不良损害 ‎[7] 。淀粉样蛋白β蛋白(Amyloid β-protein, Aβ)是一种由氨基酸组成的短肽,Aβ的前体是淀粉样蛋白前体蛋白(Amyloid Precursor Protein, APP)。在脑神经元的细胞膜上,APP在分泌酶存在下被裂解以产生Aβ肽,淀粉样蛋白是错误折叠的蛋白质,显示出稳定的二级结构 ‎[8] 。APP有两种加工途径,非淀粉样蛋白生成途径与淀粉样蛋白生成途径。在非淀粉样蛋白生成途径中,α-分泌酶在淀粉样蛋白序列中间切割APP,当被β-分泌酶进一步切割时,产生可溶性APPα或较短的Aβ物种。在淀粉样蛋白生成途径中,β和γ分泌酶分别在N端和C端连续裂解,导致可溶性Aβ肽的形成 ‎[9] 。Aβ的大脑积累是由于产生Aβ的淀粉样蛋白APP切割与缺陷Aβ清除之间的不平衡。这会导致异常的信号级联,包括神经传递改变、神经炎症、脑氧化应激和突触功能障碍 ‎[10] 。

Aβ斑块是Aβ聚合成的不溶性淀粉样纤维。即使在没有AD症状的人类中也可能发现Aβ斑块,或者在某些AD患者中可能看不到缺乏β片结构(或经典Aβ)的广泛分布的Aβ沉积物,Aβ在体外和动物模型实验条件下诱导神经毒性是众所周知的 ‎[11] 。最早的Aβ聚集体出现在顶叶、内侧颞叶和额叶,然后逐渐存在于整个新皮层、间脑等部位。积累的研究支持淀粉样蛋白斑块和可溶性淀粉样蛋白聚集体是AD的上游原因的假设,随后触发其它理,形成淀粉样蛋白级联假说 ‎[12] 。

在AD早期,海马体和内嗅皮层特别容易受到有害的Aβ效应。海马可塑性由θ活性调节,这取决于内侧隔释放乙酰胆碱。此外,隔膜和海马体通过γ-氨基丁酸能和谷氨酸能连接相互连接和功能耦合,形成隔海马系统 ‎[13] 。而这些神经递质中的每一种都有助于海马节律。

2.2. Tau蛋白假说

AD的第二个标志是神经纤维缠结(Neurofibrillary Tangles, NFT),它们由耦合的螺旋丝组成,这些螺旋丝是在神经元细胞体中的tau过度磷酸化后形成的,而tau是调节微管蛋白组装稳定性的微管相关蛋白之一 ‎[14] 。在AD病理中,tau蛋白在不同位点被磷酸化,这似乎调节了tau蛋白与微管的相互作用。过度磷酸化的可溶性tau蛋白在脑中沉积之前会导致神经元功能障碍。高度磷酸化的tau会干扰轴突转运和线粒体呼吸等神经元活动 ‎[15] 。此外,tau蛋白的异常错误折叠导致β-折叠原纤维的形成,这些原纤维积聚在中枢神经系的细胞内,导致神经退行性疾病,统称为tau病。神经退行性蛋白病通过中枢神经系统内错误折叠蛋白的积累而炭化,例如AD中的tau ‎[16] 。

Aβ的聚集引起突触应激并诱导炎症反应。同时,突触和神经元损伤导致tau的过度磷酸化,tau在神经元内聚集为NFT,最终导致神经元死亡。随着疾病的扩散和进展,整个大脑会出现广泛的神经元死亡,最终导致失智 ‎[17] 。在病理条件下,与tau相互作用的蛋白质可以参与其非生理修饰,导致神经退行性疾病的发展。而在病理修饰下,就会导致NFT与螺旋丝的形成,从而导致神经类疾病的发展 ‎[18] 。tau聚集是tau病的明显病理学标志。有毒物种是不溶性聚集体、前纤维可溶性tau低聚物、已经形成的聚集体的碎片,还是被浸入聚集体的可溶性tau的损失。AD认知能力下降的漫长时期表明毒性是一个缓慢的累积过程 ‎[19] 。因此,蛋白质从微管中解离并启动细胞损伤过程,该过程总是导致细胞死亡。磷酸化tau蛋白的聚集干扰NFT,神经变性的重要介质,以及受AD影响的大脑神经元功能障碍 ‎[20] 。

2.3. 神经炎症

神经炎症一般指的是周围神经炎症,是由各种原因,如感染、代谢疾病、血管疾病等导致的神经的炎症。神经炎症是宿主防御机制之一,神经系统通过它保护自身免受致病性和感染性损伤 ‎[21] 。值得注意的是,神经胶质细胞的异常激活可以介导神经炎症,导致神经退行性疾病。来自外围和大脑内的受损信号不断激活小胶质细胞,从而导致炎症反应的持续来源。长期慢性炎症反应也会加剧小胶质细胞的内质网氧化应激,从而引发小胶质细胞依赖性免疫应答,最终导致AD的发生和恶化 ‎[22] 。

小胶质细胞是神经胶质细胞的一种,是一种常驻免疫细胞,是中枢神经系统免疫系统的最前沿防御 ‎[23] 。临床研究表明,AD脑中的小胶质细胞以表型活化形式存在,并且与Aβ斑块高度相关,其数量和尺寸与斑块大小成比例直接增加。这支持了它们对Aβ原纤维吞噬作用的潜在贡献 ‎[24] 。Aβ斑块形成并沉积在大脑的不同区域,这些斑块被大脑识别为异物,通过激活小胶质细胞和释放细胞因子来引发炎症和免疫反应,最终导致细胞死亡和神经变性 ‎[25] 。小胶质细胞是先天脑免疫系统的一部分,小胶质细胞相关基因的突变,如超氧化物歧化酶1、视神经磷酸酶、和含valosin的蛋白质等激活小胶质细胞会增加神经毒性因子的产生,导致神经炎症 ‎[26] 。小胶质细胞通过先天模式识别受体(Pattern Recognition Receptor, PRR)如Toll样受体(Toll-Like Receptor, TLR)识别病毒蛋白和核酸等病原体相关分子模式(Pathogen-associa ted Molecular Patterns, PAMP),介导先天性和适应性免疫,并修复对入侵病原体和损伤的反应 ‎[27] 。

小胶质细胞的功能之一是检测和清除有毒的蛋白质聚集体。随着AD的进展,小胶质细胞变得功能失调。淀粉样蛋白压实使小胶质细胞暴露于Aβ,并将受体信号传导促进小胶质细胞活化,导致促炎细胞因子的产生 ‎[28] 。通过全基因组基因表达研究,小胶质细胞活化和促炎细胞因子释放,随着认知能力下降,越来越多的参与神经炎症的基因在衰老的大脑中上调 ‎[29] 。神经胶质细胞在正常病理条件下提供抗炎作用,自由基消耗和细胞修复等。细胞因子的释放和自由基的产生可导致神经元细胞死亡和突触功能障碍。因此,如果促炎,抗炎功能的调节之间存在不平衡,则可能导致脑损伤 ‎[30] 。此外,小胶质细胞与星形胶质细胞的功能性损坏会导致AD中的Aβ的清除率受损,从而促进AD的发展。

3. 八段锦对AD的影响

3.1. 八段锦的功法特点

八段锦是中国古代气功功法。在中国古老的导引术中流传最广,对导引术发展影响最大的一种。八段锦运动起源于宋代,至今已有一千多年的历史。早期立式八段锦的内容最初见于宋代曾愦的《道枢·众妙篇》。《修真十书》中的钟离八段锦是最早的有原文与注释的坐式八段锦。无论坐式八段锦还是立式八段锦都是古代导引术的优秀继承者 ‎[31] 。在八百多年的发展过程中,它们都为中国人的健康做出了伟大贡献。

中国传统运动提供了一种不同于西医的治疗思路和方法,即不同于西医的治疗方法,即非拮抗性和非内科治疗方法。它将人体视为一个整体,一种基于和解的物理治疗方法,即辩证处理,处处相辅相成,调整虚实 ‎[32] 。八段锦有8节要定期进行的动作,即支撑天堂,向两侧拉弓,单手举起,练习回头,握手摇尾巴,双手触摸脚,双手攀爬和放松背部,每种姿势都可能对身体的不同部位或特定器官产生有益影响 ‎[33] 。它是呼吸和身体的结合运动健身方法。与传统练习相比,八段锦更侧重于通过发展来提高身体力量和心理建设的信息平衡维持身心 ‎[34] 。八段锦作为一种安全易掌握,曾用于治疗疾病、康复、运动医学等。它包括缓慢,放松和系统的运动,适合身体虚弱和老年人。同时,它也可以增强身体肌肉 ‎[35] 。其功法特点主要表现为势正招圆、柔和缓慢、松紧结合、动静相兼、神与形合、气寓其中。八段锦属于身心有氧运动。在运动中求静与静并重,重视进入静止的实现,通过心智对大脑的调节,加强生理与心理的联系 ‎[36] 。

八段锦运动主要涉及心智和呼吸的调整,使人达到健康和谐的心态。肝、肺、脾胃、心脏、肾脏等器官适当调整,头部、肩部、腰部也相应调整。锻炼也在身体的各个部位进行,例如胸部和腹部 ‎[37] 。八段锦是基于传统中医理论的传统安全物理疗法,主要侧重于保持身体健康,加速康复过程和对抗慢性病 ‎[35] 。

3.2. 八段锦改善生活质量

中医认为,八段锦气功可以帮助疏通经、气、血,调节内脏功能,强身祛邪,增强体质,以改善睡眠,缓解不良情绪,改善血脂代谢。八段锦作为一系列有氧运动,被认为可以赋予身体能量的品质,并改善整体健康 ‎[38] 。八段锦是种身心运动,可以增强肌肉,诱导放松的心态。因此,它可以帮助个人降低疼痛敏感性并改变人们对疼痛的看法。除此之外,八段锦训练会增加大脑中叶皮层的兴奋,下调焦虑和负面情绪,从而促进心理健康 ‎[39] 。在心脏功能方面,练习八段锦可以促进血液循环,改善血氧代谢,增加心肌收缩力。它可以增加冠状动脉血流量和心肌供氧量,减少心肌耗氧量。充血性心力衰竭患者长期进行八段锦运动后,心功能可得到极大改善 ‎[40] 。八段锦在常见病老年人的康复中可以改善睡眠质量和生活质量,还可以影响血糖、血脂水平等生理反应,改善健康成人或社区老年人慢性病患者的下肢本体感觉和爆发力、心肺耐力、步速和灵活性 ‎[41] 。八段锦运动可以激活一系列自然的自身调节或自身复机制,刺激内源性神经激素的平衡释放,并且易于在短时间内掌握,适合所有年龄段 ‎[42] 。此外,八段锦需要配合呼吸,即用嘴呼气,用鼻子吸气。通过这种呼气和吸入,可以增强内脏运动,改善内脏微循环,促进肝脏代谢功能 ‎[43] 。可见中国传统运动已从中国扩展到世界,并经常用于预防和治疗许多疾病,且越来越多的证据表明,中国传统运动有益于改善身心健康 ‎[44] 。

3.3. 八段锦改善海马区功能

大脑中的Aβ斑块和tau蛋白缠结现在被广泛认为是AD的定义标志,其次是脑磁共振成像扫描可检测到的结构萎缩。其中一个特殊的神经退行性区域是海马体 ‎[45] 。海马体由12个亚区域组成,其中海马体的细分包括齿状回和角氨的组成部分(CA1,CA2,CA3和CA4区域) ‎[46] 。海马体是具有不同功能的亚区的组合,例如,重度抑郁症患者的CA3区和CA4体积减少,齿状回分子层体积缩小与记忆延迟有关。副下层参与海马体和皮质皮层下区域之间的连接,负责记忆 ‎[31] 。认知虚弱的老年人双侧前亚区、左副下层、海马体分子层、海马杏仁核过渡区(Hippocampal Amygdaloid Transition Zone, HATA)和CA1等海马亚区体积将显著减少,而脑实质比例和白质纤维总数低于健康人群 ‎[47] 。

曾有对海马结构变化的研究证明神经元可塑性、髓鞘形成和神经元间连通性的变化是一种重要的疾病,并有研究在AD的相关研究中报告了海马萎缩 ‎[48] 。因此,海马区的状况与AD有着密不可分的联系。认知障碍患者的脑形态测量、功能活动和海马体连接会发生变化。与认知正常的人相比,患有轻度认知障碍的非腔隙性患者在双侧海马体中的低频波动幅度的增加。八段锦24周后,海马低频波动幅度值降低,而海马体积增加 ‎[49] 。大脑内侧颞叶萎缩会加剧大脑衰老,并可能导致记忆力和认知功能下降,先前的研究已将内侧颞叶萎缩确定为从轻度认知障碍进展为失智的临床标志物 ‎[50] 。研究表明,认知功能障碍患者在八段锦训练后,右颞中回、右顶叶边缘角回和右前扣带回和回的功能连通性降低,而右海马灰质体积增加,海马体与右角回之间的静息状态功能连通性增加 ‎[51] 。八段锦练习后的左内侧颞叶的灰质体积显著增加,包括海马旁,海马体和杏仁核。左内侧颞叶,包括海马体和邻近的海马旁、鼻周和内嗅皮质,对记忆处理至关重要 ‎[52] 。这些结果表明,定期的八段锦干预可以增加双侧海马体和前额叶之间静息功能的连接,并有效防止衰老过程中记忆力下降 ‎[53] 。

海马体的CA1子区域通过在记忆编码过程中同时处理空间和时间记忆作为独立神经网络,在空间编码和回忆过程的分离中发挥作用 ‎[54] 。一项研究表明,为期24周的八段锦运动干预可以改善认知虚弱的老年人的认知和身体功能,逆转CA1体积的减少,并显著减少了某些海马亚区域的萎缩 ‎[55] 。

3.4. 八段锦改善认知功能

默认模式网络(Default Mode Network, DMN)是顶叶、颞叶和额叶皮层中一组广泛分布的大脑区域。这些区域通常在需要注意力的任务中表现出活动减少,但在多种形式的复杂认知中增加活动,其中许多与记忆或抽象思维有关 ‎[56] 。眶额叶皮层是记忆信息过程的关键额叶区域,单侧内侧颞叶癫痫患者与DMN不同部分相关的视觉空间记忆能力改变。研究发现,八段锦可以通过降低内侧前额叶皮层和眶前额回之间的静息状态功能连通性来防止记忆力下降 ‎[57] 。

八段锦是一种中等强度的有氧运动,对人体的消化、呼吸、循环和运动功能有很好的促进作用 ‎[58] 。体育活动或锻炼不仅具有积极的认知效果,可以改善老年人的大脑健康。神经影像学领域的一些发现提供了证据,证明定期运动对减轻有或没有认知障碍的老年人的认知障碍和灰质体积萎缩有积极作用 ‎[59] 。八段锦是中国传统的身心锻炼运动,包括身体放松,心理意象和正念。这些心理过程可能通过保留大脑区域的激活模式和大脑网络的连通性来改善认知、注意力和情绪 ‎[60] 。作为一种心理干预形式,运动意象不需要实际动作,而只需要模拟头脑内的运动,并反映大脑感知的运动,这适用于身体不便或运动空间有限的情况。先前的研究表明,运动意象与实际运动具有神经生理学相似性 ‎[61] 。除此之外,通过为期24周八段锦锻炼,能够有效地从身心方面改善老年人的生活质量,并改善认知功能。

一项研究表明,有氧训练可以增加轻度认知障碍患者的海马体积,从而改善认知功能,进行不少于20分钟的有氧运动,每周至少三次,持续3个月,可以触发神经发生,从而促进大脑可塑性的优化,这对认知功能有益 ‎[62] 。八段锦运动作为一种身心疗法,对患者的疲劳、生活质量和负面情绪有有益的影响。此外,这种练习易于学习,可以在社区中广泛使用,对环境没有限制 ‎[63] 。在生活质量方面,八段锦能够有效的在身心方面进行改善,并提高生活质量,减少抑郁与疲劳。气功和八段锦对促进老年人的认知能力非常有益,八段锦健康活动能够智预防方面的神经心理结果。除此之外,八段锦活动可以增强老年人的记忆功能,并与改善心理健康、精神健康和综合记忆有关,以提高记忆力和预防失智 ‎[64] 。

4. 结论与展望

在“健康中国”与“医体结合”的背景下,体育锻炼在疾病治疗方案中地位正逐步升高。研究显示,AD患者脑内神经炎症引发的胶质细胞的功能性损坏会导致AD中的Aβ的清除率受损,使脑内Aβ的异常沉积,而AD早期的海马体和内嗅皮层特别容易受到有害的Aβ效应,这将导致人的认知功能记忆功能下降。除此之外,海马体萎缩也是认知障碍患者认知功能受损的主要原因之一。八段锦作为中国古代健身气功,是一项老少皆宜的运动,它旨在通过柔和舒缓,动静相谦的动作,从而达到强身健体的效果。八段锦运动干预能够有效改善认知虚弱的老年人与AD患者的认知功能与身体功能,疏通经、气、血,调节内脏功能,促进血液循环,定期八段锦运动对减轻认知障碍老年人的认知功能障碍和灰质体积萎缩有积极作用,并可减少某些海马亚区域的萎缩。可见八段锦运动干预认知功能不仅是一种低成本治疗,还能够从身心方面改善认知功能障碍患者的生活质量与认知功能。但八段锦在对疾病改善方面的研究进程与结果也有待更进一步深入探索。

基金项目

本文获2021年福建省社科基金(FJ2021X023),2022年宁德师范学院引进人才项目基金(2022Y24)支持。

NOTES

*通讯作者。

参考文献

[1] Breijyeh, Z. and Karaman, R. (2020) Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25, Article 5789.
https://doi.org/10.3390/molecules25245789
[2] Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Na-nomedicine, 14, 5541-5554.
https://doi.org/10.2147/IJN.S200490
[3] Tay, L.X., Ong, S.C., Tay, L.J., et al. (2023) Economic Burden of Alzheimer’s Disease: A Systematic Review. Value in Health Regional Issues, 40, 1-12.
https://doi.org/10.1016/j.vhri.2023.09.008
[4] Lei, P., Ayton, S. and Bush, A.I. (2021) The Essential Elements of Alzheimer’s Disease. Journal of Biological Chemistry, 296, Article ID: 100105.
https://doi.org/10.1074/jbc.REV120.008207
[5] Fang, J., Zhang, L., Wu, F., et al. (2021) The Safety of Baduanjin Exercise: A Systematic Review. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 8867098.
https://doi.org/10.1155/2021/8867098
[6] Knopman, D.S., Amieva, H., Petersen, R.C., et al. (2021) Alzheimer Disease. Nature Reviews Disease Primers, 7, Article No. 33.
https://doi.org/10.1038/s41572-021-00269-y
[7] Sivanesan, S., Chang, E., Howell, M.D., et al. (2020) Am-yloid Protein Aggregates: New Clients for Mitochondrial Energy Production in Thebrain? The FEBS Journal, 287, 3386-3395.
https://doi.org/10.1111/febs.15225
[8] Ma, C., Hong, F. and Yang, S. (2022) Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules, 27, Article 1210.
https://doi.org/10.3390/molecules27041210
[9] Vogt, A.S., Jennings, G.T., Mohsen, M.O., et al. (2023) Alzheimer’s Disease: A Brief History of Immunotherapies Targeting Amyloid β. International Journal of Molecular Sciences, 24, Article 3895.
https://doi.org/10.3390/ijms24043895
[10] Fontana, I.C., Zimmer, A.R., Rocha, A.S., et al. (2020) Amy-loid-Beta Oligomers in Cellular Models of Alzheimer’s Disease. Journal of Neurochemistry, 155, 348-369.
https://doi.org/10.1111/jnc.15030
[11] Habtemariam, S. (2019) Natural Products in Alzheimer’s Disease Therapy: Would Old Therapeutic Approaches Fix the Broken Promise of Modern Medicines? Molecules, 24, Article 1519.
https://doi.org/10.3390/molecules24081519
[12] Jiao, F., Jiang, D., Li, Y., et al. (2022) Amyloidogen-esis and Neurotrophic Dysfunction in Alzheimer’s Disease: Do They Have A Common Regulating Pathway? Cells, 11, Article 3201.
https://doi.org/10.3390/cells11203201
[13] Gauthier-Umana, C., Munoz-Cabrera, J., Val-derrama, M., et al. (2020) Acute Effects of Two Different Species of Amyloid-β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plasticity, 2020, Article ID: 8869526.
https://doi.org/10.1155/2020/8869526
[14] Zibman, S., Pell, G.S., Barnea-Ygael, N., et al. (2021) Application of Transcranial Magnetic Stimulation for Major Depression: Coil Design and Neuroanatomical Variability Consid-erations. European Neuropsychopharmacology, 45, 73-88.
https://doi.org/10.1016/j.euroneuro.2019.06.009
[15] Uddin, M.S., Kabir, M.T., Jalouli, M., et al. (2022) Neuroinflammatory Signaling in the Pathogenesis of Alzheimer’s Disease. Current Neuropharmacology, 20, 126-146.
https://doi.org/10.2174/1570159X19666210826130210
[16] Gibbons, G.S., Lee, V. and Trojan-owski, J.Q. (2019) Mechanisms of Cell-to-Cell Transmission of Pathological Tau: A Review. JAMA Neurology, 76, 101-108.
https://doi.org/10.1001/jamaneurol.2018.2505
[17] Rohr, D., Boon, B., Schuler, M., et al. (2020) Label-Free Vibrational Imaging of Different Abeta Plaque Types in Alzheimer’s Disease Reveals Sequential Events in Plaque Development. Acta Neuropathologica Communications, 8, Article No. 222.
https://doi.org/10.1186/s40478-020-01091-5
[18] Sinsky, J., Pichlerova, K. and Hanes, J. (2021) Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. International Journal of Mo-lecular Sciences, 22, Article 9207.
https://doi.org/10.3390/ijms22179207
[19] Naseri, N.N., Wang, H., Guo, J., et al. (2019) The Complexity of Tau in Alzheimer’s Disease. Neuroscience Letters, 705, 183-194.
https://doi.org/10.1016/j.neulet.2019.04.022
[20] Schwab, E., Queiroz, R., Fiebrantz, A., et al. (2022) Hy-pothesis on Ontogenesis and Pathophysiology of Alzheimer’s Disease. Einstein, 20, W170.
https://doi.org/10.31744/einstein_journal/2022RW0170
[21] Mishra, A., Bandopadhyay, R., Singh, P.K., et al. (2021) Neuroinflammation in Neurological Disorders: Pharmacotherapeutic Targets from Bench to Bedside. Met-abolic Brain Disease, 36, 1591-1626.
https://doi.org/10.1007/s11011-021-00806-4
[22] Wang, M., Zhang, H., Liang, J., et al. (2023) Exercise Sup-presses Neuroinflammation for Alleviating Alzheimer’s Disease. Journal of Neuroinflammation, 20, Article No. 76.
https://doi.org/10.1186/s12974-023-02753-6
[23] Singh, D. (2022) Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer’s Disease. Journal of Neuroinflammation, 19, Article No. 206.
https://doi.org/10.1186/s12974-022-02565-0
[24] Lecca, D., Jung, Y.J., Scerba, M.T., et al. (2022) Role of Chronic Neuroinflammation in Neuroplasticity and Cognitive Function: A Hypothesis. Alzheimer’s & Dementia, 18, 2327-2340.
https://doi.org/10.1002/alz.12610
[25] Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’S Disease. Current Neuropharmacology, 18, 1106-1125.
https://doi.org/10.2174/1570159X18666200528142429
[26] Ahmad, M.A., Kareem, O., Khushtar, M., et al. (2022) Neuroinflammation: A Potential Risk for Dementia. International Journal of Molecular Sciences, 23, Article 616.
https://doi.org/10.3390/ijms23020616
[27] Campbell, G.R., Rawat, P., Teodorof-Diedrich, C., et al. (2023) IRAK1 Inhibition Blocks the HIV-1 RNA Mediated Pro-Inflammatory Cytokine Response from Microglia. Journal of General Virology, 104, Article ID: 001858.
https://doi.org/10.1099/jgv.0.001858
[28] Andronie-Cioara, F.L., Ardelean, A.I., Nistor-Cseppento, C.D., et al. (2023) Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer’s Disease Progression. International Journal of Molecular Sciences, 24, Article 1869.
https://doi.org/10.3390/ijms24031869
[29] Cai, Y., Liu, J., Wang, B., et al. (2022) Microglia in the Neuroin-flammatory Pathogenesis of Alzheimer’s Disease and Related Therapeutic Targets. Frontiers in Immunology, 13, Article 856376.
https://doi.org/10.3389/fimmu.2022.856376
[30] Dhapola, R., Hota, S.S., Sarma, P., et al. (2021) Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Neuroinflammation for Alzheimer’s Disease. Inflammopharmacology, 29, 1669-1681.
https://doi.org/10.1007/s10787-021-00889-6
[31] Li, J., Liu, W., Cao, L., et al. (2021) Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest. Genes, 12, Article 683.
https://doi.org/10.3390/genes12050683
[32] Cheng, M., Wang, Y., Wang, S., et al. (2022) Network Me-ta-Analysis of the Efficacy of Four Traditional Chinese Physical Exercise Therapies on the Prevention of Falls in the Elderly. Frontiers in Public Health, 10, Article 1096599.
https://doi.org/10.3389/fpubh.2022.1096599
[33] Zeng, Z.P., Liu, Y.B., Fang, J., et al. (2020) Effects of Baduanjin Exercise for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Complementary Therapies in Medicine, 48, Article ID: 102279.
https://doi.org/10.1016/j.ctim.2019.102279
[34] Ye, X.X., Ren, Z.Y., Vafaei, S., et al. (2022) Effectiveness of Baduanjin Exercise on Quality of Life and Psychological Health in Postoperative Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Integrative Cancer Therapies, 21, 1-13.
https://doi.org/10.1177/15347354221104092
[35] Tian, T., Cai, Y., Zhou, J., et al. (2020) Effect of Eight-Section Brocade on Bone Mineral Density in Middle Age and Elderly People: Protocol for a Systematic Review and Meta-Analysis of Randomised Controlled Trials. Medicine, 99, e18549.
https://doi.org/10.1097/MD.0000000000018549
[36] Su, H., Wang, H. and Meng, L. (2021) The Effects of Baduanjin Exercise on the Subjective Memory Complaint of Older Adults: A Randomized Controlled Trial. Medi-cine, 100, e25442.
https://doi.org/10.1097/MD.0000000000025442
[37] Lv, W., Wang, X., Liu, J., et al. (2019) Eight-Section Brocade Exercises Improve the Sleep Quality and Memory Consolidation and Cardiopulmonary Function of Older Adults with Atrial Fibrillation-Associated Stroke. Frontiers in Psychology, 10, Article 2348.
https://doi.org/10.3389/fpsyg.2019.02348
[38] Lu, Y., Qu, H.Q., Chen, F.Y., et al. (2019) Effect of Baduanjin Qigong Exercise on Cancer-Related Fatigue in Patients with Colorectal Cancer Undergoing Chemotherapy: A Randomized Controlled Trial. Oncology Research and Treatment, 42, 431-439.
https://doi.org/10.1159/000501127
[39] Wang, F., Zhang, X., Tong, X., et al. (2021) The Effects on Pain, Physical Function, and Quality of Life of Quadriceps Strengthening Exercises Combined with Baduanjin Qigong in Older Adults with Knee Osteoarthritis: A Quasi-Experimental Study. BMC Musculoskeletal Disorders, 22, Article No. 313.
https://doi.org/10.1186/s12891-021-04179-8
[40] Mei, B., Yuan, L. and Shu, Y. (2023) Quantitative Evidence of the Effect of Baduanjin Exercise on Quality of Life and Cardiac Function in Adults with Chronic Heart Failure. Complementary Therapies in Clinical Practice, 53, Article ID: 101775.
https://doi.org/10.1016/j.ctcp.2023.101775
[41] Lin, H., Wan, M., Ye, Y., et al. (2023) Effects of Baduanjin Exercise on the Physical Function of Middle-Aged and Elderly People: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Complementary Medicine and Therapies, 23, Article No. 38.
https://doi.org/10.1186/s12906-023-03866-4
[42] Wang, X.Q., Pi, Y.L., Chen, P.J., et al. (2016) Traditional Chinese Exercise for Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 5, e2562.
https://doi.org/10.1161/JAHA.115.002562
[43] Wan, T., Hong, K.D. and Lu, S.Y. (2022) Exercise Prescription Intervention Rehabilitation Suggestions for Fatty Liver Patients. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 2506327.
https://doi.org/10.1155/2022/2506327
[44] Jiang, B., Feng, C., Hu, H., et al. (2022) Traditional Chinese Ex-ercise for Neurodegenerative Diseases: A Bibliometric and Visualized Analysis with Future Directions. Frontiers in Aging Neuroscience, 14, Article 932924.
https://doi.org/10.3389/fnagi.2022.932924
[45] Wu, J., Dong, Q., Zhang, J., et al. (2021) Federated Mor-phometry Feature Selection for Hippocampal Morphometry Associated β-Amyloid and Tau Pathology. Frontiers in Neuroscience, 15, Article 762458.
https://doi.org/10.3389/fnins.2021.762458
[46] Rao, Y.L., Ganaraja, B., Murlimanju, B.V., et al. (2022) Hippocampus and Its Involvement in Alzheimer’s Disease: A Review. 3 Biotech, 12, Article No. 55.
https://doi.org/10.1007/s13205-022-03123-4
[47] Wan, M., Ye, Y., Lin, H., et al. (2020) Deviations in Hip-pocampal Subregion in Older Adults with Cognitive Frailty. Frontiers in Aging Neuroscience, 12, Article 615852.
https://doi.org/10.3389/fnagi.2020.615852
[48] Balestrieri, J., Nonato, M.B., Gheler, L., et al. (2020) Struc-tural Volume of Hippocampus and Alzheimer’s Disease. Revista da Associacao Medica Brasileira (1992), 66, 512-515.
https://doi.org/10.1590/1806-9282.66.4.512
[49] Tao, J., Liu, J., Chen, X., et al. (2019) Mind-Body Exercise Improves Cognitive Function and Modulates the Function and Structure of the Hippocampus and Anterior Cingulate Cortex in Patients with Mild Cognitive Impairment. NeuroImage: Clinical, 23, Article ID: 101834.
https://doi.org/10.1016/j.nicl.2019.101834
[50] Zheng, G., Ye, B., Xia, R., et al. (2021) Traditional Chinese Mind-Body Exercise Baduanjin Modulate Gray Matter and Cognitive Function in Older Adults with Mild Cognitive Impairment: A Brain Imaging Study. Brain Plasticity, 7, 131-142.
https://doi.org/10.3233/BPL-210121
[51] Wu, Z., Kuang, Y., Wan, Y., et al. (2023) Effect of a Baduanjin Intervention on the Risk of Falls in the Elderly Individuals with Mild Cognitive Impairment: A Study Protocol for a Randomized Controlled Trial. BMC Complementary Medicine and Therapies, 23, Article No. 233.
https://doi.org/10.1186/s12906-023-04050-4
[52] Tao, J., Liu, J., Liu, W., et al. (2017) Tai Chi Chuan and Baduanjin Increase Grey Matter Volume in Older Adults: A Brain Imaging Study. Journal of Alzheimer’s Disease, 60, 389-400.
https://doi.org/10.3233/JAD-170477
[53] Tao, J., Liu, J., Egorova, N., et al. (2016) Increased Hippocampus-Medial Prefrontal Cortex Resting-State Functional Connectivity and Memory Function after Tai Chi Chuan Practice in Elder Adults. Frontiers in Aging Neuroscience, 8, Article 25.
https://doi.org/10.3389/fnagi.2016.00025
[54] Tanaka, K.Z., He, H., Tomar, A., et al. (2018) The Hippo-campal Engram Maps Experience But Not Place. Science, 361, 392-397.
https://doi.org/10.1126/science.aat5397
[55] Wan, M., Xia, R., Lin, H., et al. (2022) Baduanjin Exercise Modulates the Hippocampal Subregion Structure in Community-Dwelling Older Adults with Cognitive Frailty. Frontiers in Aging Neuroscience, 14, Article 956273.
https://doi.org/10.3389/fnagi.2022.956273
[56] Smallwood, J., Bernhardt, B.C., Leech, R., et al. (2021) The Default Mode Network in Cognition: A Topographical Perspective. Nature Reviews Neuroscience, 22, 503-513.
https://doi.org/10.1038/s41583-021-00474-4
[57] Liu, J., Tao, J., Liu, W., et al. (2019) Different Modulation Effects of Tai Chi Chuan and Baduanjin on Resting-State Functional Connectivity of the Default Mode Network in Older Adults. Social Cognitive and Affective Neuroscience, 14, 217-224.
https://doi.org/10.1093/scan/nsz001
[58] Lin, Z.G., Li, R.D., Ai, F.L., et al. (2022) Effects of Cognitive Be-havior Therapy Combined with Baduanjin in Patients with Colorectal Cancer. World Journal of Gastrointestinal Oncology, 14, 319-333.
https://doi.org/10.4251/wjgo.v14.i1.319
[59] Li, M.Y., Huang, M.M., Li, S.Z., et al. (2017) The Effects of Aerobic Exercise on the Structure and Function of DMN-Related Brain Regions: A Systematic Review. International Journal of Neuroscience, 127, 634-649.
https://doi.org/10.1080/00207454.2016.1212855
[60] Lei, J., Yang, J., Dong, L., et al. (2022) An Exercise Prescription for Patients with Lung Cancer Improves the Quality of Life, Depression, and Anxiety. Frontiers in Public Health, 10, Article 1050471.
https://doi.org/10.3389/fpubh.2022.1050471
[61] Yao, L., Sun, G., Wang, J., et al. (2022) Effects of Baduanjin Imagery and Exercise on Cognitive Function in the Elderly: A Functional Near-Infrared Spectroscopy Study. Frontiers in Public Health, 10, Article 968642.
https://doi.org/10.3389/fpubh.2022.968642
[62] Li, W., Weng, L., Xiang, Q., et al. (2021) Trends in Research on Traditional Chinese Health Exercises for Improving Cognitive Function: A Bibliometric Analysis of the Literature from 2001 to 2020. Frontiers in Public Health, 9, Article 794836.
https://doi.org/10.3389/fpubh.2021.794836
[63] Wei, X.L., Yuan, R.Z., Jin, Y.M., et al. (2021) Effect of Baduanjin Exercise Intervention on Cognitive Function and Quality of Life in Women with Breast Cancer Receiving Chemotherapy: Study Protocol of a Randomized Controlled Trial. Trials, 22, Article No. 405.
https://doi.org/10.1186/s13063-021-05355-w
[64] Tsai, F.J. and Shen, S.W. (2022) Concepts of Dementia Prevention in the Health Promotion among Older Adults: A Narrative Review. Medicine, 101, e32172.
https://doi.org/10.1097/MD.0000000000032172