促皮肤伤口愈合的生物材料研究进展
Research Progress of Biomaterials for Promoting Skin Wound Healing
DOI: 10.12677/ACM.2024.143742, PDF, HTML, XML, 下载: 58  浏览: 99 
作者: 宋明玉, 张曦木*:重庆医科大学附属口腔医院牙周科,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 生物材料伤口敷料伤口愈合Biomaterials Wound Dressing Wound Healing
摘要: 皮肤伤口愈合是一个复杂的多阶段生物学过程,严重的皮肤损伤或患者全身健康状况不良等情况会显著降低皮肤的愈合能力,容易形成慢性创面。传统的伤口敷料功能单一,无法促进伤口愈合。近年来,生物材料由于其强大的功能,受到了广泛关注和研究。某些生物材料本身具有生物黏附、抗菌、促血管生成等作用,还可以根据需要调整生物材料的理化性质以及负载的生物活性物质,这些特点对于设计伤口敷料是有利的。目前已经研发出了许多基于生物材料的新型伤口敷料。本文将对促皮肤伤口愈合的生物材料研究进展进行综述。
Abstract: Skin wound healing is a complex multi-stage biological process. Severe skin injury or poor general health of patients can significantly reduce the skin healing ability, and it is easy to form chronic wounds. Traditional wound dressings have a single function and cannot promote wound healing. In recent years, biomaterials have received extensive attention and research due to their powerful functions. Some biomaterials themselves have the effects of biological adhesion, antibacterial, and angiogenesis, and their physical and chemical properties and loaded bioactive substances can be adjusted according to needs. These characteristics are beneficial for the design of wound dressings. Many new biomaterial-based wound dressings have been developed. This article reviews the re-search progress of biomaterials for skin wound healing.
文章引用:宋明玉, 张曦木. 促皮肤伤口愈合的生物材料研究进展[J]. 临床医学进展, 2024, 14(3): 581-586. https://doi.org/10.12677/ACM.2024.143742

1. 引言

皮肤是人体最大的器官,约占身体质量的六分之一,由各种细胞类型组成,它们以高度协调的方式相互作用,维持体内平衡,保护内部器官免受外部环境影响,是保卫身体的第一道屏障 [1] 。但因长期暴露在外部环境中,皮肤的完整性很容易被破坏,从而使其功能受损。为了修复受损伤的部位,皮肤组织需要经历一个复杂的重塑过程,从血肿形成开始,然后启动连续的创伤修复步骤,最终才能使皮肤再生 [2] 。这一复杂的过程在某些情况下会受到阻碍,例如患有某些基础性疾病如糖尿病、严重的感染、烧伤等情况,容易导致伤口延迟愈合,形成慢性伤口,病情严重者可能导致败血症、截肢,甚至危及生命的严重后果 [3] [4] [5] 。皮肤损伤,特别是慢性伤口,需要长期治疗,极大程度增加了患者的痛苦,并给医疗保健系统带来巨大负担。并且,随着人口老龄化,糖尿病等基础性疾病的患者数量在不断上升,创伤延迟愈合导致慢性伤口的问题不容忽视 [6] 。

理想的创面愈合材料应满足各种要求,如理想的生物降解性、无毒性和非免疫原性、组织生物相容性、良好的机械性能等。近年来,生物材料由于其强大的功能,受到了广泛关注。生物材料被广泛定义为一种天然或人造的物质,其可与生物系统相互作用或调节生物系统,如可通过与细胞、细胞外基质和多种生长因子等相互作用,为慢性创面愈合提供良好的环境,促进皮肤创面愈合过程 [5] 。天然的、合成的生物材料或它们的复合材料已经被开发使用于不同的技术中,例如已经研发出了多种基于膜、水凝胶、纳米材料和纳米颗粒、微针技术和3D生物打印技术等的伤口愈合支架或敷料。本文对促皮肤伤口愈合的生物材料研究进展进行综述。

2. 促皮肤伤口愈合的生物材料

2.1. 膜

膜或薄膜可用作伤口敷料,它们是由成膜材料溶解在溶剂中,通过涂抹或喷洒紧紧粘附于皮肤创伤部位,形成半透明保护膜 [7] 。膜对气体和水蒸气具有适当的透过性,但能隔绝液体和细菌,具有隔菌、透气、防水、使用方便、易于观察伤口情况、促进伤口愈合等特点 [8] 。但由于其没有足够的膨胀性,当伤口渗出物过多时可能出现渗出物积聚进而容易导致感染 [9] ,因此,通常会在制备时引入抗感染的药物或成分以缓解限制。Lopes [10] 等将药物吲哚美辛加入到壳聚糖-黄原胶复合膜中,药物在膜的微观结构中形成不均匀的聚集体,增加了膜的不透明度,但药物的加入对膜的机械性能没有显著影响,测试结果显示以每克生物聚合物20毫克吲哚美辛的初始比例在6小时内从膜中释放的药物最接近推荐的治疗剂量,具有作为皮肤损伤表面的活性创面敷料的潜力。因膜的制备工艺比较简单,且易于在短时间内大量生产,根据需要可添加各种功能性物质进行改良,具有较强的实际运用价值,因此,膜被认为是可用于开发有效的伤口愈合敷料的技术。

2.2. 水凝胶

水凝胶是一类极为亲水的三维网络结构凝胶,由于存在交联网络结构,水凝胶可以在水中迅速溶胀并保有大量的水,是亲水性大分子和大量水的结合体。因其具有良好的保湿性、生物相容性、生物降解性等特点,已成为最适合用于制作伤口敷料的材料之一,它们能使伤口表面保持湿润,并可作为支架材料负载细胞和治疗药物等,可制备出具有良好的生物黏附、抗菌、促血管生成和抗炎性能等特点的新型材料,有助于创面愈合 [11] [12] 。Chen等 [13] 的研究制备一种由多肽丝氨酸–谷氨酸–赖氨酸–缬氨酸–丙氨酸–缬氨酸(SIKVAV)修饰的壳聚糖水凝胶敷料,该水凝胶可促进皮肤成纤维细胞增殖和迁移、胶原合成以及多种生长因子分泌,并且在动物实验中证实该敷料可促进皮肤创面血管生成,促进再上皮化过程以及胶原纤维沉积。

近年来还研发出了可注射型水凝胶,可注射型水凝胶使用时通过注射器以液态注入体内并在生理环境中形成固体凝胶,相比于传统水凝胶材料可以更有利于贴合创面,且易于在较深的创面运用,使用更加便捷 [14] [15] 。基于蛋白质的可注射水凝胶因其良好的生物相容性和固有的生物功能而引起了研究人员的关注。Tang [16] 等人开发了一种基于角蛋白的可注射水凝胶,实验显示其在大鼠断尾模型和肝损伤模型中均表现出良好的止血效果,且易于操作,有望用作止血材料和伤口敷料材料。还可根据需要在水凝胶材料中添加合适的生物活性物质,如Chen [17] 等人开发了一种可注射的、自愈的水凝胶敷料,该水凝胶是由多臂硫代聚乙二醇(SH-PEG)与硝酸银(AgNO3)协同交联而成的,其中硝酸银负载了血管生成药物去铁胺,实验证实该水凝胶材料具有良好的血管生成和抗菌特性,可用于糖尿病伤口的再生。也可以利用水凝胶作为干细胞输送的载体,通过增加干细胞在伤口部位的停留时间来改善伤口愈合过程 [18] 。为了治疗糖尿病溃疡,有研究者制备了负载骨髓间充质干细胞(BMSCs)的N-异丙基丙烯酰胺(NIPAM)基温敏水凝胶,该水凝胶可刺激骨髓间充质干细胞分泌生长因子,即转化生长因子-β1和碱性成纤维细胞生长因子,能有效减轻伤口炎症反应,促进伤口愈合 [19] 。载有骨髓间充质干细胞的温敏性水凝胶还可促进伤口处的胶原沉积和表皮及真皮结构重塑 [20] 。

总体而言,水凝胶已经成为一种很有前途的用于促皮肤慢性伤口愈合的敷料和支架材料。

2.3. 纳米材料和纳米颗粒

通过对纳米材料进行简单的修饰,可以获得所需的性能,即适合的大小、表面能、润湿性等,此外,纳米材料具有良好的生物相容性,还可以实现药物的持续释放,常作为载体输送各种促进慢性伤口愈合的药物或生物活性物质 [21] 。常用的纳米材料包括无机纳米颗粒、脂类纳米颗粒、脂质体、聚合物纳米颗粒、负载抗生素或生长因子的纳米颗粒。

许多无机纳米颗粒材料本身已经显示出抗菌活性,有利于慢性伤口愈合,如:银纳米颗粒、金纳米颗粒、氧化铍纳米颗粒等 [22] [23] 。铜纳米颗粒除了具有抗菌性能外,还具有生物活性,并已被证明可调节伤口愈合的生物过程,有利于创面愈合 [24] 。聚合物纳米颗粒材料是一种生物相容的胶体体系,以纳米胶囊或纳米球的形式制成,广泛用于组织修复和药物持续释放。制备聚合物纳米颗粒常用的材料有:聚D,L-丙交酯–乙交酯(PLGA)、壳聚糖、明胶、海藻酸盐和其他聚合物组合 [21] [25] 。如前所述,这些聚合物纳米颗粒材料也可用于输送治疗药物。Chereddy [26] 等研发的携带抗菌肽LL37的PLGA纳米颗粒(PLGA-LL37 NPs)材料,可调节血管内皮生长因子(VEGF)和白细胞介素-6 (IL-6)的表达,促进血管生成,调节伤口炎症反应,促进创面愈合。Dave [27] 等研制了一种可缓释诺氟沙星长达24小时的脂类聚合物纳米颗粒,这些负载诺氟沙星的纳米颗粒在对铜绿假单胞菌和金黄色葡萄球菌的抗菌效果测试中表现良好,用于治疗烧伤引起的感染取得了良好的疗效。脂质体是由一个或多个磷脂等两亲性分子组成的脂双层球形囊泡,它们无毒、生物相容好、可生物降解,是很有前途的纳米药物载体 [28] 。Xu [29] 等研制了一种以丝素蛋白水凝胶为核心包裹碱性成纤维细胞生长因子(bFGF)的新型脂质体,这种新型脂质体可加速伤口的愈合,脂质体中的水凝胶成分显著提高了bFGF的稳定性。纳米材料和纳米颗粒在制备促皮肤创面愈合材料方面有着广泛的运用前景。

2.4. 微针

表皮的最外层是由已死亡的无核角质细胞构成的角质层,其主要作用是保护其皮下组织免受外界伤害,但当皮肤需要局部运用药物治疗时,角质层屏障使得高分子量的药物无法穿透,影响药物治疗效果,微针技术是指使用无痛微创的方法穿透皮肤最外面的角质层,这样可以绕过皮肤的角质层屏障,实现在皮肤内预定距离处持续给药 [30] 。Guo等受鲨鱼牙齿启发,并结合智能伤口管理系统研发了一种新型微针材料,它们由硅、金属和聚合物材料制成,微针可以无痛地刺入表皮,从而形成微小的孔隙,治疗药物可以通过这些孔隙快速扩散到组织微环境,促进伤口愈合过程,实验结果显示在糖尿病小鼠模型的体内实验中,微针治疗组伤口区域完全愈合,效果明显优于对照组 [30] 。但在使用微针技术输送治疗药物和生物活性分子时需要考虑的一个问题是,角质层的厚度有个体差异,因此,微针穿刺深度可能变化很大,导致在提供药物的治疗效果方面出现差异。

2.5. 3D生物打印

如前所述,伤口愈合是一种高度复杂的现象,涉及一系列细胞和生物分子的相互作用,如生长因子、细胞因子、趋化因子等 [31] [32] 。因此,为了促进愈合过程,人们正在探索各种天然生物材料,包括胶原、纤维素、果胶、海藻酸盐、明胶、透明质酸等,以配制具有生物相容性、生物降解性、高含水率、机械稳定性和无毒性质的生物墨水,再与细胞和其他生物材料混合后打印成细的圆柱形线条,从而形成3D分层结构,这就是3D生物打印技术 [33] [34] 。目前,各种基于3D生物打印技术的新型生物活性伤口敷料正在开发中。如有研究者提出了一种由硫醇修饰的透明质酸(HA)和甲基丙烯酸酐修饰的HA衍生的双交联HA水凝胶网络,作为3D生物打印伤口敷料的生物墨水,在水凝胶中加入了抗菌药物那福西林,以达到良好的抗菌效果,所研制的敷料可为创面提供湿润的微环境,显示出高细胞活性,并可显著加速创面修复 [35] 。有研究者设计了一种由紫外线固化的羧甲基纤维素/e-聚赖氨酸(CP)制成的3D打印仿生水凝胶,在全层感染的大鼠皮肤缺损模型上检测了所开发的水凝胶敷料的创面愈合效果,与商业敷料(Tegaderm膜)相比,3D打印仿生水凝胶组显示出更佳的伤口愈合效果 [36] 。与其他敷料制造技术相比,3D生物打印技术具有精确、制备灵活、可快速构建所需支架并易于重复运用等优势 [37] ,是一种很有发展前景的伤口管理方法,可以利用其进一步促进慢性伤口的愈合过程。

3. 总结与展望

生物材料因其强大的功能,近年来受到广泛的关注,某些生物材料本身具有一些独特的功能,如生物黏附、抗菌、促血管生成等,这些功能对于设计先进的慢性伤口愈合敷料非常重要,另外还可以根据需要调整生物材料的理化性质以及携带的生物活性物质等。过去几十年里,针对伤口愈合的不同步骤,已经研发出了许多基于生物材料的促慢性伤口愈合新型材料,但许多研究还停留在基础研发阶段,未进行更进一步的临床实验,临床转化仍存在诸多问题,继续研发更适合临床使用的促皮肤创面愈合材料的新型材料仍有必要。

NOTES

*通讯作者。

参考文献

[1] Mathes, S., Ruffner, H. and Graf-Hausner, U. (2014) The Use of Skin Models in Drug Development. Advanced Drug Delivery Reviews, 69-70, 81-102.
https://doi.org/10.1016/j.addr.2013.12.006
[2] Eming, S., Martin, P. and Tom-ic-Canic, M. (2014) Wound Repair and Regeneration: Mechanisms, Signaling, and Translation. Science Translational Medicine, 6, 265sr6.
https://doi.org/10.1126/scitranslmed.3009337
[3] GBD 2019 Viewpoint Collaborators (2019) Five Insights from the Global Burden of Disease Study 2019. The Lancet, 396, 1135-1159.
[4] Gomes, A., Teixeira, C., Ferraz, R., Prudêncio, C. and Gomes, P.J.M. (2017) Wound-Healing Peptides for Treatment of Chronic Diabetic Foot Ulcers and Other Infected Skin Injuries. Molecules, 22, Article 1743.
https://doi.org/10.3390/molecules22101743
[5] Farahani, M. and Shafiee, A. (2021) Wound Healing: From Pas-sive to Smart Dressings. Advanced Healthcare Materials, 10, e2100477.
https://doi.org/10.1002/adhm.202100477
[6] Rodrigues, M., Kosaric, N., Bonham, C. and Gurtner, G. (2019) Wound Healing: A Cellular Perspective. Physiological Reviews, 99, 665-706.
https://doi.org/10.1152/physrev.00067.2017
[7] Choi, S.J., Lee, J.H., Lee, Y.H., Hwang, D.Y. and Kim, H.D. (2011) Synthesis and Properties of Polyurethane-Urea-Based Liquid Bandage Materials. Journal of Applied Polymer Science, 121, 3516-3524.
https://doi.org/10.1002/app.34135
[8] Devinder, M.T. (2003) Recent Advances in Topical Therapy in Dermatolo-gy. Indian Journal of Dermatology, 48, 1-11.
[9] Arthe, R., Arivuoli, D. and Venkatraman, R. (2019) Preparation and Characterization of Bioactive Silk Fibroin/Paramylon Blend Films for Chronic Wound Healing. International Journal of Biological Macromolecules, 154, 1324-1331.
https://doi.org/10.1016/j.ijbiomac.2019.11.010
[10] Lopes, S.A., Veiga, I.G., Bierhalz, A.C.K., Pires, A.L.R. and Moraes, Â.M. (2018) Physicochemical Properties and Release Behavior of Indomethacin-Loaded Polysaccharide Membranes. International Journal of Polymeric Materials and Polymeric Bio-materials, 68, 956-964.
https://doi.org/10.1080/00914037.2018.1525540
[11] Zahid, A., Ahmed, R., Raza Ur Rehman, S., Augustine, R., Tariq, M. and Hasan, A. (2019) Nitric Oxide Releasing Chitosan-Poly (Vinyl Alcohol) Hy-drogel Promotes Angiogenesis in Chick Embryo Model. International Journal of Biological Macromolecules, 136, 901-910.
https://doi.org/10.1016/j.ijbiomac.2019.06.136
[12] Basu, S., Chakraborty, A., Alkiswani, A., Shamiya, Y. and Paul, A. (2022) Investigation of a 2D WS2 Nanosheet-Reinforced Tough DNA Hydrogel as a Biomedical Scaf-fold: Preparation and in Vitro Characterization. Materials Advances, 3, 946-952.
https://doi.org/10.1039/D1MA00897H
[13] Chen, X., Zhang, M., Chen, S., Wang, X., Tian, Z., Chen, Y., Xu, P., Zhang, L., Zhang, L. and Zhang, L.J.C.T. (2017) Peptide-Modified Chitosan Hydrogels Accelerate Skin Wound Healing by Promoting Fibroblast Proliferation. Migration, and Secretion, 26, 1331-1340.
https://doi.org/10.1177/0963689717721216
[14] Guo, S., Ren, Y., Chang, R., He, Y., Zhang, D., Guan, F. and Yao, M.J.A.A.M. (2022) Injectable Self-Healing Adhesive Chitosan Hydrogel with Antioxidative, Antibacterial, and Hemostatic Activities for Rapid Hemostasis and Skin Wound Healing. ACS Applied Materials & Interfaces, 14, 34455-34469.
https://doi.org/10.1021/acsami.2c08870
[15] Bertsch, P., Diba, M., Mooney, D. and Leeuwenburgh, S.J.C.R. (2023) Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 123, 834-873.
https://doi.org/10.1021/acs.chemrev.2c00179
[16] Tang, A., Li, Y., Yao, Y., Yang, X., Cao, Z., Nie, H. and Yang, G. (2021) Injectable Keratin Hydrogels as Hemostatic and Wound Dressing Materials. Biomaterials Science, 9, 4169-4177.
https://doi.org/10.1039/D1BM00135C
[17] Chen, H., Cheng, R., Zhao, X., Zhang, Y., Tam, A., Yan, Y., Shen, H., Zhang, Y.S., Qi, J. and Feng, Y. (2019) An Injectable Self-Healing Coordinative Hydrogel with Antibacte-rial and Angiogenic Properties for Diabetic Skin Wound Repair. NPG Asia Materials, 11, Article No. 3.
https://doi.org/10.1038/s41427-018-0103-9
[18] Da Silva, L., Reis, R., Correlo, V. and Marques, A. (2019) Hy-drogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annual Review of Biomedical Engineering, 21, 145-169.
https://doi.org/10.1146/annurev-bioeng-060418-052422
[19] Chen, S., Shi, J., Zhang, M., Chen, Y. and Zhang, L. (2015) Mesenchymal Stem Cell-Laden Anti-Inflammatory Hydrogel Enhances Diabetic Wound Healing. Scientific Re-ports, 5, Article No. 18104.
https://doi.org/10.1038/srep18104
[20] Lei, Z., Singh, G., Min, Z., Shixuan, C., Xu, K., Pengcheng, X., Xueer, W., Yinghua, C., Lu, Z. and Lin, Z. (2018) Bone Marrow-Derived Mesenchymal Stem Cells Laden Novel Thermo-Sensitive Hydrogel for the Management of Severe Skin Wound Healing. Materials Science Engi-neering, 90, 159-167.
https://doi.org/10.1016/j.msec.2018.04.045
[21] Wang, W., Lu, K., Yu, C., Huang, Q. and Du, Y. (2019) Nano-Drug Delivery Systems in Wound Treatment and Skin Regeneration. Journal of Nanobiotechnology, 17, Article No. 82.
https://doi.org/10.1186/s12951-019-0514-y
[22] Masood, N., Ahmed, R., Tariq, M., Muham-mad, Z. and Masoud, S. (2019) Silver Nanoparticle Impregnated Chitosan-PEG Hydrogel Enhances Wound Healing in Diabetes Induced Rabbits. International Journal of Pharmaceutics, 559, 23-26.
https://doi.org/10.1016/j.ijpharm.2019.01.019
[23] Pormohammad, A., Monych, N., Ghosh, S., Turner, D. and Turner, R. (2021) Nanomaterials in Wound Healing and Infection Control. Antibiotics, 10, Article 473.
https://doi.org/10.3390/antibiotics10050473
[24] Liu, T., Xiao, B., Xiang, F., Tan, J. and Deng, J. (2020) Ul-trasmall Copper-Based Nanoparticles for Reactive Oxygen Species Scavenging and Alleviation of Inflammation Related Diseases. Nature Communications, 11, Article No. 2788.
https://doi.org/10.1038/s41467-020-16544-7
[25] Soliman, G.M. (2017) Nanoparticles as Safe and Effective De-livery Systems of Antifungal Agents: Achievements and Challenges. International Journal of Pharmaceutics, 523, 15-32.
https://doi.org/10.1016/j.ijpharm.2017.03.019
[26] Chereddy, K., Her, C., Comune, M., Moia, C., Lopes, A., Por-porato, P., Vanacker, J., Lam, M., Steinstraesser, L., Sonveaux, P., Zhu, H., Ferreira, L., Vandermeulen, G. and Préat, V. (2014) PLGA Nanoparticles Loaded with Host Defense Peptide LL37 Promote Wound Healing. Journal of Controlled Release, 194, 138-147.
https://doi.org/10.1016/j.jconrel.2014.08.016
[27] Dave, V., Kushwaha, K., Yadav, R. and Agrawal, U. (2017) Hybrid Nanoparticles for the Topical Delivery of Norfloxacin for the Effective Treatment of Bacterial Infection Produced After Burn. Journal of Microencapsulation, 34, 351-365.
https://doi.org/10.1080/02652048.2017.1337249
[28] Chen, J., Cheng, D., Li, J., Wang, Y., Guo, J., Chen, Z., Cai, B. and Yang, T. (2013) Influence of Lipid Composition on the Phase Transition Temperature of Liposomes Composed of Both DPPC and HSPC. Drug Development Industrial Pharmacy, 39, 197-204.
https://doi.org/10.3109/03639045.2012.668912
[29] Xu, H., Chen, P., ZhuGe, D., Zhu, Q., Jin, B., Shen, B., Xiao, J. and Zhao, Y. (2017) Liposomes with Silk Fibroin Hydrogel Core to Stabilize BFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald. Advanced Healthcare Materials, 6, Article ID: 1700344.
https://doi.org/10.1002/adhm.201700344
[30] Guo, M., Wang, Y., Gao, B. and He, B. (2021) Shark Tooth-Inspired Microneedle Dressing for Intelligent Wound Management. ACS Nano, 15, 15316-15327.
https://doi.org/10.1021/acsnano.1c06279
[31] Gurtner, G., Werner, S., Barrandon, Y. and Longaker, M. (2008) Wound Repair and Regeneration. Nature, 453, 314-321.
https://doi.org/10.1038/nature07039
[32] Kumar, J. and Mandal, B. (2017) Antioxidant Potential of Mulberry and Non-Mulberry Silk Sericin and Its Implications in Biomedicine. Free Radical Biology Medicine, 108, 803-818.
https://doi.org/10.1016/j.freeradbiomed.2017.05.002
[33] Suarato, G., Bertorelli, R. and Athanassiou, A. (2018) Borrowing from Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Frontiers in Bioengineering Biotechnology, 6, Article 416094.
https://doi.org/10.3389/fbioe.2018.00137
[34] Klar, A., Güven, S., Biedermann, T., Luginbühl, J., Böt-tcher-Haberzeth, S., Meuli-Simmen, C., Meuli, M., Martin, I., Scherberich, A. and Reichmann, E. (2014) Tis-sue-Engineered Dermo-Epidermal Skin Grafts Prevascularized with Adipose-Derived Cells. Biomaterials, 35, 5065-5078.
https://doi.org/10.1016/j.biomaterials.2014.02.049
[35] Si, H., Xing, T., Ding, Y., Zhang, H., Yin, R. and Zhang, W. (2019) 3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluron-ic-Acid-Based Hydrogels. Polymers, 11, Article 1584.
https://doi.org/10.3390/polym11101584
[36] Xw, A., Jq, A., Wz, A., Yp, A., Rong, Y.A., Pw, A., Shuai, L.C., Xta, B. and Bo, C. (2021) 3D-Printed Antioxidant Antibacterial Carboxymethyl Cellulose/ε-Polylysine Hydrogel Pro-moted Skin Wound Repair. International Journal of Biological Macromolecules, 187, 91-104.
https://doi.org/10.1016/j.ijbiomac.2021.07.115
[37] Osidak, E.O., Kozhukhov, I., Osidak, M.S. and Domogatsky, S.P. (2020) Collagen as Bioink for Bioprinting: A Comprehensive Review. International Journal of Bioprinting, 6, Arti-cle 270.
https://doi.org/10.18063/ijb.v6i3.270