多酚对高血压的影响及其与肠道菌群有关机制的研究进展
Advancements in the Study of Polyphenols’ Impact on Hypertension and Their Mechanism Related to Gut Microbiota
DOI: 10.12677/ACM.2024.143825, PDF, HTML, XML, 下载: 21  浏览: 44 
作者: 凌晓萌, 王保珍*:山东大学公共卫生学院卫生毒理与营养学系,山东 济南
关键词: 苹果多酚高血压肠道菌群Apple Polyphenols Hypertension Intestinal Flora
摘要: 高血压是以血压升高为主要特点的全身性疾病。我国人群患病率水平仍处在较高水平,且高血压控制率总体仍较低。高血压会导致机体靶器官的损伤,包括心脏、肾脏、血管、大脑等靶器官功能和结构的损伤等。目前,高血压是我国面临的重要公共卫生问题,造成了严重的医疗和经济负担。因此,进一步探寻防治高血压的策略及食物来源的植物化学物以降低对药品的依赖具有重要意义。肠道菌群是寄居在人体肠道内的微生物群,与正常人群相比,高血压人群的肠型改变、肠道菌群多样性降低以及某些细菌种群丰度改变。但是肠道菌群作为高血压防治靶点的潜力还需要进一步深入研究。多酚是水果和蔬菜中发现的具有生物活性的化合物,有改善其色泽、风味和加强药理活性等作用。目前虽然有研究证据支持某些多酚亚类具有抗炎、调节肠道菌群以及降低血脂的作用,但多酚参与血压调节及其潜在机制仍需要更多的证据来支持。因此,本综述旨在系统回顾和综合分析国内外关于多酚对高血压的影响及基于肠道菌群的机制研究,以期为高血压的防治提供新的思路和方法。
Abstract: Hypertension, characterized by elevated blood pressure, is a systemic disease that poses a sig-nificant public health problem. The prevalence of hypertension in our population remains high, while the overall rate of hypertension control is still at a low level. Hypertension can cause damage to various target organs of the organism, including the heart, kidneys, blood vessels and brain. Consequently, it leads to serious medical and economic burdens. Therefore, it is im-portant to further explore strategies to combat hypertension and develop dietary programs that can reduce reliance on medication. The gut flora, which refers to the microbiota residing in the human gut, undergoes altered gut shape, reduced diversity of gut flora, and altered abun-dance of certain bacterial populations in hypertensive individuals compared to normal popula-tions. However, further in-depth studies are required to fully understand the potential of tar-geting gut flora for hypertension control. Polyphenols, biologically active compounds found in fruits and vegetables, have been shown to improve their color, flavor, and enhance pharmaco-logical activity. While research supports the anti-inflammatory, intestinal flora modulating, and lipid-lowering effects of other polyphenol subclasses, more evidence is needed to establish the involvement of apple polyphenols in blood pressure regulation and their underlying mecha-nisms. Therefore, the aim of this review is to systematically review and comprehensively ana-lyze domestic and international studies on the effects of polyphenols on hypertension and their mechanisms based on intestinal flora, with a view to providing new ideas and approaches for the prevention and treatment of hypertension.
文章引用:凌晓萌, 王保珍. 多酚对高血压的影响及其与肠道菌群有关机制的研究进展[J]. 临床医学进展, 2024, 14(3): 1169-1176. https://doi.org/10.12677/ACM.2024.143825

1. 高血压概括

高血压是全球范围内最常见的慢性疾病之一,已成为全球公共卫生问题,也是心脑血管疾病和肾脏疾病的主要危险因素 [1] 。高血压是一种复杂的多因素疾病,由遗传和/或环境因素共同引起,涉及全身血压持续升高 [2] 。在一项多代队列研究中发现,调整其他混杂因素后,祖父母和父母存在早发性高血压后代的高血压风险OR值分别为2.10和1.33 [3] 。据世界卫生组织统计,全球每年有近1800万人死于心血管疾病,其中高血压是最大的风险因素,与血压升高相关的死亡可达1080万 [4] 。在全球范围内,约有三分之一的成年人患有高血压 [5] 。在过去三十年中,高血压患者人数翻了一番,从1990年的6.48亿增加到2019年的12.78亿,特别是在低收入和中等收入国家 [6] 。尽管医学界在高血压的治疗和管理方面取得了一定的进展,但仍存在许多未满足的需求。血压控制在高血压患者中仍然是一个相当大的挑战,只有一半的患者接受高血压治疗,而其中只有三分之一的患者能够将血压维持在推荐的水平 [5] 。药物治疗是高血压治疗的主要手段,但长期使用药物可能导致副作用和耐药性 [7] 。因此,寻找安全、有效的非药物疗法成为了研究热点。在这种情况下,目前的证据表明,饮食对高血压的管理有着显著的影响 [8] 。其中食物来源的多酚类物质对高血压的有益作用因其副作用小、毒性低而受到广泛关注 [9] 。多酚生物分子(酚类化合物)是膳食来源中分布最广泛的植物次生代谢产物,在体外和体内均具有显著的抗氧化和抗炎作用 [10] 。苹果多酚作为一种天然的生物活性成分,因其具有的抗氧化、抗炎和心血管保护作用而备受关注。

作为一种多因素疾病,高血压的病因很复杂,涉及影响多个病理生理系统的遗传和环境危险因素。其中,炎症和氧化应激在高血压的发病过程中发挥了重要作用 [11] ,例如,高血压与内皮功能障碍、交感神经系统和免疫系统的过度活动以及肾素–血管紧张素–醛固酮系统的上调有关 [12] 。肠道菌群作为人体内最大的微生态系统,与免疫、代谢等多个方面密切相关。近年来,越来越多的研究表明肠道菌群与高血压之间存在关联,调节肠道菌群成为高血压防治的新方向之一 [13] [14] [15] 。因此,本综述旨在系统回顾和综合分析国内外关于苹果多酚对高血压的作用及基于肠道菌群的机制研究,以期为高血压的防治提供新的思路和方法。

2. 多酚的生物活性与健康效益

酚类化合物是一组广泛存在于植物界的物质,已知有8000多种,具有不同的化学结构和活性 [16] 。可以在蔬菜、种子、水果、坚果、红酒、茶和许多其他食物来源中找到酚类化合物。在结构上,酚类化合物是次生植物代谢产物,其特征是至少有一个芳香环与一个或多个羟基相连对多种疾病具有多种潜在应用 [17] 。多酚按照结构可以分为单酚、类黄酮和非类黄酮。类黄酮分子的结构多样性源于中心吡喃环的羟基化模式和氧化态的变化,从而产生了多种化合物:黄烷醇、花青素、花青素、异黄酮、黄酮、黄烷酮和黄烷醇(图1) [18] 。

Figure 1. Basic structures of mainly different subclasses of flavonoids

图1. 黄酮类化合物主要不同亚类的基本结构

3. 肠道菌群与高血压和多酚的联系

3.1. 肠道菌群与高血压的关联

肠道菌群是人体内最大的微生态系统,与人体健康密切相关。2017年,Li等人通过宏基因组学和代谢组学分析健康人群、高血压前期和原发性高血压患者的肠道菌群结构及代谢物的差异。结果显示,高血压患者肠道菌群的丰富度、多样性和基因数量均显著低于健康对照组,高血压前期受试者的肠道菌群与高血压患者相似 [15] 。此外,Li等人将高血压患者的粪便移植到无菌小鼠中,发现受体小鼠的收缩压(SBP)、舒张压(DBP)和平均动脉压均显著高于健康对照组,表明肠道菌群不仅可以调节宿主的血压,还可以在“高血压传播”中发挥作用 [15] 。

近年来新的证据表明,肠道菌群以多种方式参与高血压的发生和发展,肠道屏障功能、肠道菌群结构和肠道微生物代谢产物是参与高血压发生发展的关键因素 [14] 。肠道菌群失调与高血压的发生和发展密切相关 [15] [19] 。肠道屏障损伤不仅会导致肠道菌群失调,还会导致肠道通透性增加。肠道屏障功能受损引起的细菌易位导致全身炎症,进一步导致内皮细胞功能障碍和血管硬化,最终加重高血压 [19] 。Kim等人显示,高血压患者肠道脂肪酸结合蛋白、脂多糖(LPS)和肠道靶向辅助性T细胞17 (Th17)显著增加,表明高血压患者肠道炎症和通透性增加。同时,肠上皮细胞中紧密连接蛋白调节剂的水平显著升高,进一步支持了高血压伴有肠道屏障功能障碍的推测 [20] 。此外,多项研究发现,自发性大鼠(Spontaneously Hypertensive Rat, SHR)的肠粘膜厚度和血流量均降低,腺杯状细胞和紧密连接蛋白减少,肠绒毛高度降低,肠道通透性增加,表明高血压可能导致肠道屏障功能受损 [21] [22] 。

肠道菌群的结构变化与高血压的发生同样有关联。既往研究表明,高血压患者肠道菌群结构失调,有害菌和变形菌数量显著增加,这种变化与肠道炎症和免疫紊乱密切相关 [21] [23] 。动物实验表明,对SHR或慢性血管紧张素II (AngII)输注诱导的大鼠粪便样本分析表明,两组大鼠肠道菌群变化相似,即厚壁菌(Firmicutes)与拟杆菌(Bacteroidetes)的比值(F/B比值)增加,微生物丰富度、多样性和均匀性降低,产醋酸盐和丁酸盐细菌丰度显著降低 [24] 。盐敏感组和耐盐组大鼠肠道菌群差异大,特别是盐敏感组有害菌数量显著增加 [25] 。Marques等人分别给去氧皮质酮(Deoxycorticosterone Acetate, DOCA) DOCA高血压小鼠喂食高纤维饮食和醋酸盐饮食,他们的结果表明,高纤维饮食可以通过增加肠道拟杆菌丰度和乙酸盐浓度来降低血压 [26] 。

同时,肠道菌群产生的代谢物短链脂肪酸也与高血压的发生发展密切相关。短链脂肪酸主要由丁酸盐、乙酸盐和丙酸盐组成,可以通过激活G蛋白偶联受体(GPCR)来调节血压 [27] 。动物实验表明,外源性丙酸盐补充剂可有效降低Ang II诱导的高血压大鼠的血压,这种作用与丙酸盐激活血管内皮中的GPR41有关 [28] 。GPR41和GPR43是SCFA的受体,丙酸盐是其有效的激动剂,它们的相互作用促进了细胞内钙离子的释放,从而降低血压 [29] 。丁酸盐可以改变GPR109A的水平,通过保护肾小球基底膜上的足细胞和减少肾小球硬化和组织炎症,有效改善蛋白尿并降低血压 [30] 。另一项研究表明,丙酸盐可以调节血液中肾素的分泌水平,并通过嗅觉受体78 (Olfr78)调节血压 [31] 。调节免疫炎症反应是短链脂肪酸调节血压的另一种途径。动物实验表明,短链脂肪酸可以促进GPR43介导的白介素-10 (IL-10)增加,从而减少肠道炎症 [32] 。补充短链脂肪酸还可以通过调节Th17、调节性T细胞(Treg)等来调节血压。在AngII诱导的高血压大鼠中,外源丙酸盐具有抗高血压、抗炎和抗动脉硬化作用,这可能与Th17、Treg和IL-10介导的免疫炎症反应有关 [28] 。

高血压患者现肠道屏障功能受损、肠道菌群多样性降低和肠道微生物代谢产物紊乱等变化,这些改变可以通过影响宿主的能量代谢、炎症反应、免疫调节等途径进而影响血压水平。因此,调节肠道菌群成为高血压防治的新方向之一。

3.2. 膳食多酚对肠道菌群的调节作用

近年来,越来越多的研究关注到饮食多酚对肠道菌群的调节作用。通过增加膳食多酚的摄入进行饮食干预是防治代谢紊乱的新兴策略。最近的研究表明,花青素、儿茶素、绿原酸和白藜芦醇等多酚可以抑制大肠杆菌和沙门氏菌等致病菌,帮助调节肠道菌群。使用普通抗生素可能导致病原体的耐药性,因此有益的多酚可能是抗生素的合适天然替代品 [33] 。黄酮类和茶多酚等多种多酚类物质可以保护上皮屏障功能,调节肠道菌群,调节核因子κB和丝裂原活化蛋白激酶等信号通路,抑制氧化应激,发挥抗炎作用,从而改善炎症性肠病 [34] 。He等人采用盐酸林可霉素诱导Balb/c小鼠,建立肠道生态失调模型,而苹果皮多酚干预通过在转录和翻译水平上调紧密连接蛋白的表达来增强小鼠的机械屏障功能;在免疫屏障方面,苹果皮多酚下调TLR4和NF-κB的蛋白和mRNA表达;在生物屏障方面,苹果皮多酚促进了有益菌的生长,增加了肠道菌群的多样性;并显著提高了小鼠短链脂肪酸的含量 [35] 。含有表儿茶素、原花青素和绿原酸的苹果多酚也会使盲肠中短链脂肪酸浓度增加,并且苹果多酚与苹果果胶的结合显示出累加效应 [36] 。

综上所述,多酚可以缓解肠道炎症和上皮损伤,并诱导肠道菌群的潜在有益变化,改善肠道菌群结构;同时,多酚还能够提高肠道屏障功能,减少肠道内毒素的吸收,从而减轻炎症反应和氧化应激,有助于揭示宿主–微生物相互作用和肠道生态多酚调控的潜在机制。这些研究结果表明苹果多酚可能通过调节肠道菌群、增强肠道屏障功能和干预肠道菌群的代谢物来发挥其对高血压大鼠的治疗作用。

4. 关于多酚与高血压的研究

多项研究表明,多酚可以通过多种机制对高血压产生积极影响。首先多酚已被证明可以降低氧化应激水平,并作为强抗氧化剂中和产生的自由基 [37] 。类黄酮是苹果多酚中的主要成分之一,越来越多的证据表明,类黄酮具有潜在的抗氧化特性。有一种新的观点认为,类黄酮及其代谢物不仅可以作为传统的供氢抗氧化剂,还可以通过靶向蛋白质和脂质激酶信号通路在细胞中发挥调节作用 [38] 。黄酮类化合物调节血压最常见的作用机制是其抗氧化特性。据报道,这些多酚是自由基和ROS的有效直接清除剂 [39] 。黄酮类化合物被自由基氧化,产生更稳定、反应性更低的化合物;它们也被用作还原剂。在最有效的抗氧化化合物中,黄酮醇(即槲皮素)、黄烷酮(即柚皮素和橙皮苷)、黄酮(即芹菜素)、黄烷-3-醇(即儿茶素)、二苯乙烯(即白藜芦醇)已被证明可以直接清除自由基,从而恢复血管功能 [40] 。膳食原花青素具有抗氧化剂和信号分子的特征,其抗氧化特性归因于清除活性氧 [41] 。

其次,多酚可以改善血管内皮功能,增强血管的舒张能力,从而降低血压。多酚可增加内皮细胞中NO的释放,导致血管平滑肌细胞中环磷酸鸟苷(cGMP)的活化,并发挥血管松弛作用,以及抗氧化、抗炎和抗血栓形成作用 [42] 。黄酮类化合物,如花青素、黄酮(即木犀草素)、黄烷酮(即柚皮苷)、黄烷-3-醇(即表儿茶素)、黄酮醇(即山奈酚)、异黄酮和白藜芦醇,可能通过增强信号通路调节提供的诱导型NO合酶(iNOS)和内皮NO合酶(eNOS)的激活,在提高血液中NO的生物利用度方面发挥直接作用 [43] 。大多数多酚,如咖啡酸、山奈酚、槲皮素、木犀草素和生物素A,也可能通过直接作用于血管平滑肌细胞(通过激活BK通道或抑制Ca2+通道)或间接作用(通过激活内皮细胞中Ca2+激活的K+通道,导致超极化和抑制Ca2+流入血管平滑肌细胞)发挥血管舒张作用,导致血管松弛 [44] 。

5. 苹果多酚的摄入与人类健康

2015年,一项关于高血压大鼠的动物研究发现长期摄入苹果皮提取物可通过内源性抗氧化途径降低高血压大鼠的高血压。这项实验表明,苹果皮提取物作为一种膳食补充剂可以有效控制高血压的早期阶段 [45] 。荟萃分析显示摄入苹果或苹果多酚的组明显比对照组具有更高水平的高密度脂蛋白和更低水平的C反应蛋白,表明干预降低患心血管疾病的风险,苹果或苹果多酚的摄入量是与降低心血管疾病的风险有关 [46] 。

除了在动物模型中的研究,也有一些研究表明多酚对人类健康有益。Maria Saarenhovi等人研究发现富含表儿茶素和黄烷-3-醇低聚物的苹果多酚提取物对血压升高志愿者肱动脉血流介导的血管舒张功能有影响,苹果提取物对内皮依赖性肱动脉血流介导的血管舒张有显著的急性改善作用 [47] 。Jeanelle Boyer等人研究表明,富含水果和蔬菜的饮食可能降低患慢性疾病的风险,如心血管疾病和癌症,而来自水果和蔬菜的植物化学物质,包括酚类、黄酮类和类胡萝卜素,可能在降低慢性疾病风险中起关键作用 [48] 。

多酚富含于苹果、葡萄、蔓越莓等水果中。通过日常饮食摄入适量的多酚,可以帮助维持身体健康。然而,目前关于多酚类物质如苹果多酚等对高血压等具体疾病的影响和机制,仍需要更多的实验研究来证实。

6. 结论与展望

综上所述,多酚对高血压大鼠具有潜在的降压作用,其机制除了与氧化应激和血管功能有关联外,还可能与调节肠道菌群、肠道屏障功能和肠道菌群代谢物有关。这些发现为高血压的防治提供了新的思路和方法。然而,仍需要更多的临床研究来验证多酚对人类高血压的治疗效果。同时,未来研究可以进一步探讨多酚与其他降压药物的协同作用,以及其在高血压治疗中的最佳剂量和持续时间。此外,针对不同类型和程度的高血压患者,多酚的治疗效果和适用性也有待进一步研究。

尽管如此,我们可以通过日常饮食适量增加多酚的摄入,如多吃苹果、葡萄、蔓越莓等水果,以维持身体健康。同时,对于高血压患者,在医生的指导下,可以考虑适量食用富含多酚的食物或相关补充剂,以期辅助降低血压,提高生活质量。

NOTES

*通讯作者。

参考文献

[1] Pierdomenico, S.D., Di Nicola, M., Esposito, A.L., Di Mascio, R., Ballone, E., Lapenna, D. and Cuccurullo, F. (2009) Prognostic Value of Different Indices of Blood Pressure Variability in Hypertensive Patients. American Journal of Hypertension, 22, 842-847.
https://doi.org/10.1038/ajh.2009.103
[2] Derhaschnig, U., Testori, C., Ried-mueller, E., Aschauer, S., Wolzt, M. and Jilma, B. (2013) Hypertensive Emergencies Are Associated with Elevated Markers of Inflammation, Coagulation, Platelet Activation and Fibrinolysis. Journal of Human Hypertension, 27, 368-373.
https://doi.org/10.1038/jhh.2012.53
[3] Niiranen, T.J., et al. (2017) Risk for Hypertension Crosses Generations in the Community: A Multi-Generational Cohort Study. European Heart Journal, 38, 2300-2308.
https://www.ncbi.nlm.nih.gov/pmc/articles/pmc6075041
[4] Collaborators G 2019 RF (2020) Global Bur-den of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet (London, England), 396, 1223-1249.
https://doi.org/10.1016/S0140-6736(20)30752-2
[5] Beaney, T., Schutte, A.E., Stergiou, G.S., et al. (2020) May Measurement Month 2019: The Global Blood Pressure Screening Campaign of the International Society of Hypertension. Hypertension, 76, 333-341.
https://doi.org/10.1161/HYPERTENSIONAHA.120.14874
[6] (2021) Worldwide Trends in Hypertension Prevalence and Progress in Treatment and Control from 1990 to 2019: A Pooled Analysis of 1201 Popula-tion-Representative Studies with 104 Million Participants. The Lancet, 398, 957-980.
https://doi.org/10.1016/S0140-6736(21)01330-1
[7] Albasri, A., et al. (2021) Association between Anti-hypertensive Treatment and Adverse Events: Systematic Review and Meta-Analysis. BMJ, 372, n189.
https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7873715/
[8] Yamagata, K. (2021) Prevention of Vascular Endothelial Dysfunction by Polyphenols: Role in Cardiovascular Disease Prevention. In: Phytopharmaceuticals, John Wiley & Sons, Hoboken, 223-246.
https://doi.org/10.1002/9781119682059.ch11
[9] Tanghe, A., et al. (2021) Evaluation of Blood Pressure Lowering Effects of Cocoa Flavanols in Diabetes Mellitus: A Systematic Review and Meta-Analysis. Journal of Functional Foods, 79, Article ID: 104399.
https://sci-hub.hkvisa.net/10.1016/j.jff.2021.104399
https://doi.org/10.1016/j.jff.2021.104399
[10] Hooper, L., Kay, C., Abdelhamid, A., Kroon, P.A., Cohn, J.S., Rimm, E.B. and Cassidy, A. (2012) Effects of Chocolate, Cocoa, and Flavan-3-Ols on Cardiovascular Health: A Systematic Review and Meta-Analysis of Randomized Trials. The American Journal of Clinical Nutrition, 95, 740-751.
https://doi.org/10.3945/ajcn.111.023457
[11] Sekar, D., Shilpa, B.R. and Das, A.J. (2017) Rele-vance of MicroRNA 21 in Different Types of Hypertension. Current Hypertension Reports, 19, Article No. 57.
https://doi.org/10.1007/s11906-017-0752-z
[12] Zhang, Z., Zhao, L., Zhou, X., Meng, X. and Zhou, X. (2023) Role of Inflammation, Immunity, and Oxidative Stress in Hypertension: New Insights and Potential Therapeutic Targets. Frontiers in Immunology, 13, Article ID: 1098725.
https://doi.org/10.3389/fimmu.2022.1098725
[13] Richards, E.M., Li, J., Stevens, B.R., Pepine, C.J. and Raizada, M.K. (2022) Gut Microbiome and Neuroinflammation in Hypertension. Circulation Research, 130, 401-417.
https://doi.org/10.1161/CIRCRESAHA.121.319816
[14] Yang, Z., Wang, Q., Liu, Y., Wang, L., Ge, Z., Li, Z., Feng, S. and Wu, C. (2023) Gut Microbiota and Hypertension: Association, Mechanisms and Treatment. Clinical and Experimental Hypertension, 45, Article ID: 2195135.
https://doi.org/10.1080/10641963.2023.2195135
[15] Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contributes to the Development of Hypertension. Microbiome, 5, Article No. 14.
https://doi.org/10.1186/s40168-016-0222-x
[16] Del Rio, D., et al. (2013) Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxidants & Redox Signaling, 18, 1818-1892.
[17] Zdunczyk, Z., Frejnagel, S., Wróblewska, M., Juśkiewicz, J., Oszmiański, J. and Estrella, I. (2002) Biological Activity of Polyphenol Extracts from Different Plant Sources. Food Research International, 35, 183-186.
https://doi.org/10.1016/S0963-9969(01)00181-8
[18] Bertelli, A., Biagi, M., Corsini, M., Baini, G., Cappel-lucci, G. and Miraldi, E. (2021) Polyphenols: From Theory to Practice. Foods, 10, Article No. 2595.
https://doi.org/10.3390/foods10112595
[19] Andersen, K., Kesper, M.S., Marschner, J.A., et al. (2017) In-testinal Dysbiosis, Barrier Dysfunction, and Bacterial Translocation Account for CKD-Related Systemic Inflam-mation. Journal of the American Society of Nephrology, 28, Article No. 76.
https://doi.org/10.1681/ASN.2015111285
[20] Kim, S., Goel, R., Kumar, A., et al. (2018) Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Patients with High Blood Pressure. Clinical Science, 132, 701-718.
https://doi.org/10.1042/CS20180087
[21] Santisteban, M.M., et al. (2017) Hyperten-sion-Linked Pathophysiological Alterations in the Gut. Circulation Research, 120, 312-323.
[22] Jaworska, K., Huc, T., Samborowska, E., Dobrowolski, L., Bielinska, K., Gawlak, M. and Ufnal, M. (2017) Hypertension in Rats Is Associated with an Increased Permeability of the Colon to TMA, a Gut Bacteria Metabolite. PLOS ONE, 12, E0189310.
https://doi.org/10.1371/journal.pone.0189310
[23] Mushtaq, N., Hussain, S., Zhang, S., Yuan, L., Li, H., Ullah, S., Wang, Y. and Xu, J. (2019) Molecular Characterization of Alterations in the Intestinal Microbiota of Patients with Grade 3 Hypertension. International Journal of Molecular Medicine, 44, 513-522.
https://doi.org/10.3892/ijmm.2019.4235
[24] Yang, T., Santisteban, M.M., Rodriguez, V., et al. (2015) Gut Dysbiosis Is Linked to Hypertension. Hypertension, 65, 1331-1340.
https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
[25] Wilck, N., Matus, M.G., Kearney, S.M., et al. (2017) Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease. Nature, 551, 585-589.
https://doi.org/10.1038/nature24628
[26] Marques, F.Z., et al. (2017) High-Fiber Diet and Acetate Supple-mentation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hyper-tensive Mice. Circulation, 135, 964-977.
[27] Huart, J., et al. (2019) Gut Microbiota and Fecal Levels of Short-Chain Fatty Acids Differ upon 24-Hour Blood Pressure Levels in Men. Hypertension, 74, 1005-1013.
[28] Bartolomaeus, H., Balogh, A., Yakoub, M., et al. (2019) Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage. Circulation, 139, 1407-1421.
https://doi.org/10.1161/CIRCULATIONAHA.118.036652
[29] Poul, E.L., Loison, C., Struyf, S., et al. (2003) Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation. Journal of Biological Chemistry, 278, 25481-25489.
https://doi.org/10.1074/jbc.M301403200
[30] Felizardo, R.J.F., et al. (2019) Gut Microbial Metabolite Bu-tyrate Protects against Proteinuric Kidney Disease through Epigenetic- and GPR109a-Mediated Mechanisms. The FASEB Journal, 33, 11894-11908.
https://doi.org/10.1096/fj.201901080R
[31] Pluznick, J. (2014) A Novel SCFA Receptor, the Microbiota, and Blood Pressure Regulation. Gut Microbes, 5, 202-207.
https://doi.org/10.4161/gmic.27492
[32] Sun, M., Wu, W., Chen, L., et al. (2018) Microbiota-Derived Short-Chain Fatty Acids Promote Th1 Cell IL-10 Production to Maintain Intestinal Homeostasis. Nature Communications, 9, Article No. 3555.
https://doi.org/10.1038/s41467-018-05901-2
[33] Bao, N., Chen, F. and Dai, D. (2020) The Regulation of Host Intestinal Microbiota by Polyphenols in the Development and Prevention of Chronic Kidney Disease. Fron-tiers in Immunology, 10, Article No. 2981.
https://doi.org/10.3389/fimmu.2019.02981
[34] Zhong, W., Gong, J., Su, Q., Farag, M.A., Simal-Gandara, J., Wang, H. and Cao, H. (2023) Dietary Polyphenols Ameliorate Inflammatory Bowel Diseases: Advances and Future Perspectives to Maximize Their Nutraceutical Applications. Phytochemistry Reviews.
https://doi.org/10.1007/s11101-023-09866-z
[35] He, Z., Deng, N., Zheng, B., Gu, Y., Chen, J., Li, T., Liu, R.H., Yuan, L. and Li, W. (2023) Apple Peel Polyphenol Alleviates Antibiotic-Induced Intestinal Dysbiosis by Modulating Tight Junction Proteins, the TLR4/NF-κB Pathway and Intestinal Flora. Food & Function, 14, 6678-6689.
https://doi.org/10.1039/D3FO01358H
[36] Aprikian, O., Duclos, V., Besson, C., Manach, C., Morand, C., Rémésy, C., Demigné, C., Guyot, S. and Bernalier, A. (2003) Apple Pectin and a Polyphenol-Rich Apple Concentrate Are More Effective Together than Separately on Cecal Fermentations and Plasma Lipids in Rats. The Journal of Nutrition, 133, 1860-1865.
https://doi.org/10.1093/jn/133.6.1860
[37] Tsao, R. (2010) Chemistry and Biochemistry of Dietary Poly-phenols. Nutrients, 2, 1231-1246.
https://doi.org/10.3390/nu2121231
[38] Yi, J., Li, S., Wang, C., Cao, N., Qu, H., Cheng, C., Wang, Z., Wang, L. and Zhou, L. (2019) Potential Applications of Polyphenols on Main NcRNAs Regulations as Novel Therapeutic Strategy for Cancer. Biomedicine & Pharmacotherapy, 113, Article ID: 108703.
https://doi.org/10.1016/j.biopha.2019.108703
[39] Hemati, N., Asis, M., Moradi, S., Mollica, A., Stefanucci, A., Nikfar, S., Mohammadi, E., Farzaei, M.H. and Abdollahi, M. (2020) Effects of Genistein on Blood Pressure: A Systematic Review and Meta-Analysis. Food Research International, 128, Article ID: 108764.
https://doi.org/10.1016/j.foodres.2019.108764
[40] Mohammadi, M., Ramezani-Jolfaie, N., Lorzadeh, E., Khoshbakht, Y. and Salehi-Abargouei, A. (2019) Hesperidin, a Major Flavonoid in Orange Juice, Might Not Affect Lipid Profile and Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Phytotherapy Research, 33, 534-545.
https://doi.org/10.1002/ptr.6264
[41] Liang, Y., et al. (2016) Beneficial Effects of Grape Seed Proanthocya-nidin Extract on Arterial Remodeling in Spontaneously Hypertensive Rats via Protecting against Oxidative Stress. Molecular Medicine Reports, 14, 3711-3718.
https://www.spandidos-publications.com/mmr/14/4/3711
https://doi.org/10.3892/mmr.2016.5699
[42] Yamagata, K. (2019) Polyphenols Regulate Endothelial Func-tions and Reduce the Risk of Cardiovascular Disease. Current Pharmaceutical Design, 25, 2443-2458.
https://doi.org/10.2174/1381612825666190722100504
[43] Mozos, I., Flangea, C., Vlad, D.C., Gug, C., Mozos, C., Stoian, D., Luca, C.T., Horbańczuk, J.O., Horbańczuk, O.K. and Atanasov, A.G. (2021) Effects of Anthocyanins on Vascular Health. Biomolecules, 11, Article No. 811.
https://doi.org/10.3390/biom11060811
[44] Silva, H. and Lopes, N.M.F. (2020) Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Frontiers in Physiology, 11, Article ID: 595516.
https://doi.org/10.3389/fphys.2020.595516
[45] Balasuriya, N., Rupasinghe, H.P.V., Sweeney, M., McCarron, S. and Gottschall-Pass, K. (2015) Antihypertensive Effects of Apple Peel Extract on Spontaneously Hypertensive Rats. Pharmacologia, 6, 371-376.
https://doi.org/10.5567/pharmacologia.2015.371.376
[46] Zhu, X., Xu, G., Jin, W., Gu, Y., Huang, X. and Ge, L. (2021) Apple or Apple Polyphenol Consumption Improves Cardiovascular Disease Risk Factors: A Systematic Review and Meta-Analysis. RCM, 22, 835-843.
https://doi.org/10.31083/j.rcm2203089
[47] Saarenhovi, M., Salo, P., Scheinin, M., et al. (2017) The Effect of an Apple Polyphenol Extract Rich in Epicatechin and Flavan-3-Ol Oligomers on Brachial Artery Flow-Mediated Vasodilatory Function in Volunteers with Elevated Blood Pressure. Nutrition Journal, 16, Article No. 73.
https://doi.org/10.1186/s12937-017-0291-0
[48] Boyer, J. and Liu, R.H. (2004) Apple Phytochemicals and Their Health Benefits. Nutrition Journal, 3, Article No. 5.
https://doi.org/10.1186/1475-2891-3-5