鼓膜修补的组织工程材料研究进展
Research Progress of Tissue Engineering Materials for Tympanic Membrane Repair
DOI: 10.12677/acm.2024.143885, PDF, HTML, XML, 下载: 19  浏览: 56 
作者: 吕帅阳, 黄 敏, 贾斯齐, 苗森皓:济宁医学院临床学院,山东 济宁;李秀国*:济宁市第一人民医院耳鼻喉头颈外科,山东 济宁
关键词: 鼓膜穿孔组织工程干细胞细胞外基质生物活性分子Tympanic Membrane Perforation Tissue Engineering Stem Cells Extracellular Matrix Bioactive Molecules
摘要: 鼓膜穿孔(Tympanic Membrane Perforation, TMP)是耳鼻喉科常见的疾病之一,会导致听力下降、中耳炎、胆脂瘤等问题,大多数急性穿孔的鼓膜(Tympanic Membrane, TM)具有自发愈合能力,但慢性穿孔需要手术干预。然而,外科手术的缺点包括感染、麻醉风险等一系列并发症及禁忌症。组织工程的发展为鼓膜修补提供新的治疗策略,许多新型材料在鼓膜修补中取得良好效果,本文综述通过总结分析组织工程材料在鼓膜修补的最新研究进展,为临床治疗及研究提供思路。
Abstract: Tympanic membrane perforation (TMP) is one of the common diseases in otolaryngology, which can cause hearing loss, otitis media, cholesteatoma and other problems. Most acutely perforated Tympanic Membrane (TM) has spontaneous healing ability, but chronic perforation requires surgical intervention. However, the disadvantages of surgery include infection, risk of anesthesia, and risk of graft absence or deformation failure. The development of tissue engineering provides new treatment strategies for tympanic membrane repair, and many new materials have achieved good results in tympanic membrane repair. This review summarizes and analyzes the latest research progress of tissue engineering materials in tympanic membrane repair, providing ideas for clinical treatment and research.
文章引用:吕帅阳, 李秀国, 黄敏, 贾斯齐, 苗森皓. 鼓膜修补的组织工程材料研究进展[J]. 临床医学进展, 2024, 14(3): 1612-1619. https://doi.org/10.12677/acm.2024.143885

1. 引言

鼓膜(Tympanic Membrane, TM)是一种半透明的薄层组织结构,厚度约0.1 mm,面积约85 mm2,由鳞状上皮层、纤维层、黏膜内层三层结构组成,将外耳与中耳分隔开来,其声学振动驱动听骨链(锤骨、砧骨和镫骨)的运动对声音传导起到重要作用,且可以保护中耳免受微生物和外来物质的侵袭 [1] 。鼓膜由松弛部和张力部两部分组成。松弛部占据了鼓膜面积的10%左右,比紧张部有更多的血管。但缺乏张力部中密集排列的胶原纤维,故穿孔愈合较张力部慢 [2] 。造成鼓膜穿孔的常见原因有耳道异物、急慢性中耳炎、中耳或内耳肿瘤、医源性损伤、气压伤等。临床多表现为耳痛、耳鸣、听力不同程度下降及中耳反复感染等。大多数TMP在7至10天内自发愈合,这些快速愈合的穿孔被分类为急性TMP。TM的慢性穿孔已被确定为存在8~12周的穿孔。高达90%的急性穿孔无需干预即可自行愈合,但仍有10%会变成慢性穿孔。穿孔的复发率约为18%。慢性穿孔可导致反复感染、慢性中耳炎、胆脂瘤及不同程度传导性听力下降,可能需要手术闭合 [3] [4] 。目前,鼓室成形术被认为是治疗TMPs最有效的方法 [5] [6] ,各种自体移植物(颞肌筋膜、软骨膜、脂肪组织)因为其低排斥性、稳定的结构形态,广泛应用于临床治疗中,但是也有其移植物易变形,手术时间长、手术复杂繁琐、二次修补时自体材料不足等问题,体现了对生物工程策略的需求,来改善以上缺点及提高手术成功率及提高听力恢复。

2. 组织工程学材料

许多不同类型的移植物已被用于鼓膜工程,包括天然支架材料如:异体移植物(即硬脑膜、异体皮)、异种移植物(即猪小肠黏膜下层(SIS)、猪膀胱基质(UBM))和生物支架材料如:各种合成材料(即明胶泡沫、丝素蛋白、胶原、透明质酸、细菌纤维素、胶原和壳聚糖等)。这种移植物大多被证明减少了供体部位的发病率,缩短了手术时间,并避免了额外的切口 [7] [8] [9] 。

2.1. 支架材料

细胞外基质作为细胞生存的微环境,在控制细胞行为、组织形成和稳态方面发挥着重要作用,可以在组织工程及再生医学中提供修复及支架材料。细胞外基质(Extracellular Matrix, ECM)支架相对于重建支架最重要的优势是保留其功能和结构,独特的三维超微结构和力学特性,为获得ECM的组织或器官的再生提供了理想的微环境,通过冻干技术或放置复合酶溶液中洗脱获得 [10] 。细胞外基质大致可分为四类:胶原、弹性蛋白、非胶原蛋白及氨基聚糖和蛋白聚糖。

2.1.1. 脱细胞支架

脱细胞支架(异体或异种)是通过去除细胞成分保留基本的细胞外基质的机械特性和生物活性,脱细胞真皮基质(ADM)是一种软组织移植物,由组织脱细胞形成,留下细胞外基质。ADM的真皮表面有利于上皮细胞的生长和血管的形成,有助于实现快速上皮化,广泛应用于创伤愈合、组织修复和重建领域 [11] [12] 。近年来,ADM作为移植材料也被广泛的应用于鼓室成形术中。在动物实验中,有学者研究猪腹膜脱细胞胶原I/III型支架(ACS)在大鼠急性鼓膜穿孔中实验表明,ACS可明显促进TM穿孔的闭合,获得最佳的TM厚度,使三层鼓膜形态更好,胶原纤维排列整齐,听力恢复较早,且无明显炎症反应 [13] 。再细胞化能够促进了支架与TMP残留部的结合,并能部分吸收和恢复TM结构,因此在ACS中加入生长因子,生长因子能够促进细胞再生,同时能够增强支架与组织的粘附,鼓膜结构类似正常鼓膜 [10] [14] 。在豚鼠耳中植入人包皮脱细胞真皮基质,而对照组前臂植入相同大小真皮消除抗原干扰,结果实验组愈合率及时间明显优于对照组(p < 0.05),无明显抗原排斥反应,但此研究缺乏与鼓室修复组的对比 [15] 。猪膀胱基质在大鼠鼓膜修补的动物实验中,膀胱基质提供了支架材料,治疗效果优于自然愈合组,且实验组新生鼓膜结构更为均匀、透明,但同样缺少手术组对照 [16] 。Jeffrey利用脱细胞猪小肠黏膜下层(SIS)来修复大鼠的慢性鼓膜穿孔,对照组行自体软骨鼓室成形术,SIS组在耳内镜下鼓膜外观更透亮,且修复范围更大,具有鼓膜正常的三层结构,厚度更均匀 [17] 。

近些年,不少学者研究脱细胞真皮基质(ADM)与颞肌筋膜或耳屏软骨膜手术治疗的疗效对比,在谭 [18] 等人对60例慢性中耳炎患者临床对比研究中,两组均用内置法修补鼓膜,实验组使用脱细胞真皮基质(AMD),厚度在0.4~0.6 mm。对照组使用耳屏软骨膜修补,厚度在0.8 mm左右,材料厚度对长期听力结果无明显差异 [19] 。结果表明手术时间及术后疼痛明显降低,术后及术后6月听力及移植成功率无明显差异(p > 0.05)。目前自体移植仍作为手术金标准,但需另行供区切口,有感染、影响美观风险,且供体少,无法满足二次移植,ADM作为供体可消除移植物短缺,满足二次手术需要,缩短手术时间,减轻疼痛。但其费用相对自体移植较昂贵,伦理学及生物安全性的限制,在临床应用中仍相对较少。

2.1.2. 聚合物

胶原在细胞外基质中起重要作用,类似于鼓膜纤维,鼓膜纤维结构及机械运动主要由胶原来维持,具有生物相容性和可降解性 [20] ,经细胞活力测试和增殖试验,能促进鼓膜穿孔愈合,是鼓膜修复的理想材料。明胶通常是通过胶原蛋白的部分变性产生的。它具有生物相容性 [21] 。目前胶原及明胶海绵广泛用于鼓膜穿孔修复中,胶原贴片 [20] 或是明胶海绵贴补 [22] 在鼓膜穿孔修复中均已取得不错疗效。明胶海绵除了提供支架结构,还能促进血管再生,加速愈合,且多孔隙率能够结合多种药物来联合作用。

丝素蛋白(SF) [9] 是从蚕丝中提取的一种独特的天然蛋白质,具有良好的生物相容性、可降解性、可吸收性、低免疫原性和可调节的机械性能等特性,已被广泛用于组织工程中,学者 [23] 研究了鼓膜角质细胞在丝素蛋白支架生长,该生物材料支持角质细胞的生长和增殖,在鼓膜修补的动物实验 [24] 及临床实验 [25] 中均证明其有效性。丝胶 [26] 是一种无定形的蛋白质聚合物,起着黏附剂的作用,丝胶已被证明可引起炎症。因此,丝胶蛋白通常从SF中去除,以确保TE应用中的生物相容性。丝素蛋白的降解周期长且缺乏丝胶黏附作用,因此不同聚合物应用于鼓膜修复。

壳聚糖是一种粘多糖,由几丁质化学脱乙酰作用形成,是一种新型聚合物。具有抗炎作用,其无毒,无免疫原性及可降解性,广泛用在组织修复中,在早期研究中 [27] ,以往研究将其制成3D贴片修补穿孔,疗效比纸片贴补更能促进鼓膜修复,但鼓膜相对较厚且愈合率不高,因此有学者将壳聚糖贴片加入胺基团(能够增加正电荷及亲水性,增强TM细胞粘附和迁移能力)释放EGF及EGFR基因(EGF和EGFR基因的同时释放进一步增强了TM细胞的增殖、粘附和迁移能力) [28] ,对比之前释放表皮生长因子(EGF)的壳聚糖贴片 [29] 的研究,最后用X射线光电子能谱、EGF和EGFR释放试验以及细胞迁移试验验证其作用,结果是优于释放表皮生长因子(EGF)的壳聚糖贴片的研究(p = 0.04),可作为慢性鼓膜穿孔修补材料。

纤维素 [30] 是一种新型生物聚合物,它是一种生物相容性高、机械性和化学性强的多糖,具有促进细胞生长和分化的能力。而细菌纤维素(Bacterial Cellulose, BC) [31] 是微生物产生的一种纳米纤维三维结构,具有保水、弹性、机械强度、热稳定性和透明性等显著特性而成为一种广泛应用于伤口愈合的移植材料,BC的纳米纤维结构与细胞外基质(ECM)的天然结构相似,具有促进组织再生的能力,因此有学者将其应用于鼓膜修补中,体外实验结果表明,BC贴片的存在显著刺激了TM细胞的增殖和迁移。在创伤性TM穿孔的动物模型中,TM也显著再生。且三层结构均有再生 [32] [33] 。在慢性鼓膜穿孔患者中应用BC [34] ,对照组为颞肌筋膜修复,两组闭合情况相似,筋膜组平均手术时间为76.50 min,细菌纤维素组为14.06 min (p = 0.0001),评估了手术时间、住院时间、上皮化时间,BC组均较对照组短(p < 0.05)。

2.1.3. 静电纺丝和水凝胶

静电纺丝和水凝胶作为复合材料支架,其立体结构和复合作用能够更好形成鼓膜的三层结构,静电纺丝利用高压电场从聚合物溶液中生产纤维并合成复杂的三维结构 [35] ,电纺丝制备的纳米纤维具有较强的可塑性、柔性结构和较大的表面积比,可以增强细胞的粘附、增殖和分化活性,可控的药物释放潜力,在生物医学领域有着广泛的应用,生物材料选择的多样性和释放药物的潜力为鼓膜支架提供了机会 [36] 。在小鼠动物实验中 [9] ,聚L-乳酸和聚乳酸–羟基乙酸共聚物作为细胞生长的支架联合成纤维细胞和角质形成细胞来培养,穿孔鼓膜类似自然结构、完全愈合。水凝胶是一种三维支架,因其结构与细胞外基质相似且含水量高而引起人们对仿生支架的兴趣,合成的水凝胶具有良好的力学及生物性能 [37] ;一种由透明质酸、明胶、细胞外软骨基质组成的复合水凝胶在大鼠慢性穿孔模型中,与自愈组相比,应用复合水凝胶支架可以达到理想的效果,新组织与周围自然组织连接良好,复合水凝胶可能是一种有希望的候选功能材料 [38] 。

2.1.4. 3D生物打印

3D生物打印技术与传统打印技术不同,使用多种生物相容性材料、细胞和支架,来制造支架修复穿孔的耳膜。与传统贴片不同,3D打印材料不仅可以设计成具有微小孔隙和不同厚度的复杂结构,还可以用来模仿自然鼓膜组织 [14] [39] 。采用不同比例的壳聚糖和海藻酸钠与聚乳酸复合制备人工TM贴片 [39] ,模拟自然耳膜的厚度。对支架材料的化学、形态、力学性能和生物相容性进行了分析,表明3D打印鼓膜贴片是潜在的组织工程解决方案。目前多种复合材料如人脐带血清和碱性成纤维细胞生长因子(bFGF)与生物3D打印支架一起使用、水凝胶制备了含有间充质干细胞和纳米纤维的细胞负载3D支架,通过改变胶原纤维的方向,改善声学传递特性,精确排列径向和周向结构,模拟自然耳膜,并调节机械和振动特性,成为一种新型打印策略。

2.2. 生物活性分子

2.2.1. 成纤维细胞生长因子与表皮生长因子

FGF-2主要通过Ras/MAP激酶途径与FGF受体结合并激活,而EGF与受体结合后可诱导酪氨酸激酶活性,两者可从而调节皮肤、血管、肌肉、神经等多种组织中的细胞增殖、迁移和分化以及血管生成。在鼓膜穿孔处通过刺激内皮细胞、成纤维细胞、角质形成细胞的增殖和分化以及边缘新生血管的形成,从而提供上皮迁移的支架,防止耳膜萎缩,促进穿孔的愈合,通过缩短细胞分裂周期中的G1期来加速细胞增殖 [40] [41] 。在大鼠慢性TMP模型中,以人脂肪干细胞为载体,搭配人脐带血清(HUCS)和碱性成纤维细胞生长因子(BFGF),两者有协同作用,含有HUCS和bFGF的细胞负载结构可以诱导慢性鼓膜穿孔的显著再生 [42] 。在EGF和bFGF在创伤性鼓膜穿孔中疗效对比中 [43] ,EGF愈合率为86.2%,bFGF愈合率为89.3%,p = 0.723,无统计学差异。在bFGF治疗慢性鼓膜穿孔的研究中 [44] ,外伤性慢性鼓膜穿孔单独应用bFGF,愈合率为89.9%,而单独应用bFGF治疗中耳炎引起慢性鼓膜穿孔组(需去除穿孔边缘组织,制造新鲜创面),愈合率仅为27.3%。李等研究表明碱性纤维细胞生长因子(bFGF)联合明胶泡沫治疗慢性鼓膜穿孔的成功率为83%~98.1%,高于自然愈合组79.2% [45] [46] ,既往研究表明bFGF与EGF在鼓膜穿孔修复中均可起到促进作用。

2.2.2. 血小板源性生长因子

血小板源性生长因子(Platelet-Derived Growth Factor, PDGF)由血小板c颗粒、内皮细胞、成纤维细胞、平滑肌细胞和巨噬细胞释放,能够促进创面愈合。在一项应用PDGF治疗慢性鼓膜穿孔实验中,实验组与对照组(模拟PDGF气味及黏度的一种凝胶)对比,结果无统计学意义(p = 0.097),愈合率仅为10% [47] 。而富血小板血浆(Platelet-Rich Plasma, PRP)和富血小板纤维(Platelet-Rich Fibrin, PRF)富含生长因子和白细胞,可促进组织增生,并降低感染率 [48] [49] 。在动物实验中 [50] ,血浆凝胶组平均闭合天数为12天,空白对照组为17.7天。差异有统计学意义(p = 0.0145)。在临床实验中,急性TMP使用PRF穿孔愈合率可达93% [49] ,在慢性穿孔患者中 [51] [52] ,穿孔面积大于50%的患者,常规颞肌筋膜手术修补的成功率为75%和81%,而PRF联合颞肌筋膜鼓室成形术的手术成功率则可提高至94%和98%。故血小板浓缩物有良好的应用前景。

2.3.干细胞

干细胞是一种未分化的前体细胞,是身体中器官和组织形成的关键,有潜力发展成许多不同类型的细胞,具有特定的功能。它们可以通过有丝分裂细胞进行自我更新。在损伤部位,MSCs产生多种细胞因子、表面分子、营养因子和免疫调节剂来修复受损区域。如基质衍生因子-1 (SDF1)、EGF、胰岛素样生长因子(IGF)、转化生长因子-α (TGFa)和血管内皮生长因子(VEGF),促进细胞存活、细胞增殖和组织血管生成。可从外周血,骨髓,脐带血中采集,来源较丰富 [53] [54] 。David等进行一项透明质酸支架联合间充质干细胞(MSCs)在小鼠穿孔鼓膜的愈合情况及愈合鼓膜状态的研究,与支架加盐水组相比,应用支架联合MSCs组平均穿孔尺寸减小率更高,与空白组相比(p = 0.0207),MSCs组鼓膜显示三层结构恢复,炎症改变较少,而其他组则出现穿孔部位周围组织结构紊乱和细胞过度浸润 [55] 。干细胞在促进鼓膜修复方面已显示巨大潜能,且修复的鼓膜与正常鼓膜结构相似,但是干细胞的提取分离、培养及储存都是其趋待解决的问题 [56] [57] ,且研究时间尚短,其治疗机制及长期疗效及安全性仍未明确。目前虽在动物实验已有研究,但因伦理问题、治疗费用和临床安全性及疗效在临床应用仍较少,故需要进一步研究来显示干细胞的可用性。

3. 展望

近年来,鼓膜穿孔的组织工程研究有了显著的进展,了解疾病的发生发展,从细胞水平、生物因子,支架材料及纳米技术等为治疗TMP提供了新的途径,每种方法都有自己的优缺点。而基于支架材料的应用可以加速急慢性穿孔的愈合,但是,目前外科组织移植方法仍为最优选。尽管鼓膜的组织工程研究面临挑战,但使用这些技术对于治疗TMP已有巨大进步,在模仿鼓膜形态及生物学特性、细胞水平排列及优化动物模型等有很长路要走,而生物工程策略似乎是正确的方向。

NOTES

*通讯作者。

参考文献

[1] Volandri, G., Di Puccio, F., Forte, P., et al. (2011) Biomechanics of the Tympanic Membrane. Journal of Biomechanics, 44, 1219-1236.
https://doi.org/10.1016/j.jbiomech.2010.12.023
[2] Bhiryani, M.A., Panchal, A.J., Kumar, R., et al. (2022) A Study to Assess the Effect of Size & Site of Tympanic Membrane Perforation on Hearing Loss. Indian Journal of Otolaryngology and Head & Neck Surgery, 74, 4460-4466.
https://doi.org/10.1007/s12070-021-02967-1
[3] Villar-Fernandez, M.A. and Lopez-Escamez, J.A. (2015) Outlook for Tissue Engineering of the Tympanic Membrane. Audiology Research, 5, Article 117.
https://doi.org/10.4081/audiores.2015.117
[4] Lou, Z.C., Lou, Z.H., Liu, Y.C. and Chang, J. (2016) Healing Human Moderate and Large Traumatic Tympanic Membrane Perforations Using Basic Fibroblast Growth Factor, 0.3% Ofloxacin Eardrops, and Gelfoam Patching. Otology & Neurotology, 37, 735-741.
https://doi.org/10.1097/MAO.0000000000001080
[5] Mandal, M.M., Kapadia, P.B., Panchal, A.J. and Kumar, R. (2022) Fat Myringoplasty for Small Central Perforation of Tympanic Membrane: A Prospective Study. Indian Journal of Otolaryngology and Head & Neck Surgery, 74, 4388-4392.
https://doi.org/10.1007/s12070-021-03055-0
[6] Asghari, A., Mohseni, M., Daneshi, A., et al. (2018) Randomized Clinical Trial Comparing Bucket Handle and Cartilage Tympanoplasty Techniques for the Reconstruction of Subtotal or Anterior Tympanic Membrane Perforation. International Journal of Otolaryngology, 2018, Article ID: 2431023.
https://doi.org/10.1155/2018/2431023
[7] Rubinstein, B.J., Ranney, J.D., Khoshakhlagh, P., et al. (2018) A Novel Gel Patch for Minimally Invasive Repair of Tympanic Membrane Perforations. International Journal of Pediatric Otorhinolaryngology, 115, 27-32.
https://doi.org/10.1016/j.ijporl.2018.09.012
[8] Basonbul, R.A. and Cohen, M.S. (2017) Use of Porcine Small Intestinal Submucosa for Pediatric Endoscopic Tympanic Membrane Repair. World Journal of Otorhinolaryngology: Head and Neck Surgery, 3, 142-147.
https://doi.org/10.1016/j.wjorl.2017.09.001
[9] Immich, A.P.S., Pennacchi, P.C., Naves, A.F., et al. (2017) Improved Tympanic Membrane Regeneration after Myringoplastic Surgery Using an Artificial Biograft. Materials Science and Engineering: C, 73, 48-58.
https://doi.org/10.1016/j.msec.2016.12.007
[10] Badylak, S.F., Taylor, D. and Uygun, K. (2011) Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annual Review of Biomedical Engineering, 13, 27-53.
https://doi.org/10.1146/annurev-bioeng-071910-124743
[11] Takami, Y., Yamaguchi, R., Ono, S., et al. (2014) Clinical Application and Histological Properties of Autologous Tissue-Engineered Skin Equivalents Using an Acellular Dermal Matrix. Journal of Nippon Medical School, 81, 356-363.
https://doi.org/10.1272/jnms.81.356
[12] Jansen, L.A., De Caigny, P., Guay, N.A., et al. (2013) The Evidence Base for the Acellular Dermal Matrix AlloDerm: A Systematic Review. Annals of Plastic Surgery, 70, 587-594.
https://doi.org/10.1097/SAP.0b013e31827a2d23
[13] Shen, Y., Redmond, S.L., Teh, B.M., et al. (2013) Scaffolds for Tympanic Membrane Regeneration in Rats. Tissue Engineering Part A, 19, 657-668.
https://doi.org/10.1089/ten.tea.2012.0053
[14] Yao, X., Teh, B.M., Li, H., et al. (2021) Acellular Collagen Scaffold with Basic Fibroblast Growth Factor for Repair of Traumatic Tympanic Membrane Perforation in a Rat Model. OtolaryngologyHead and Neck Surgery, 164, 381-390.
https://doi.org/10.1177/0194599820938345
[15] Farahani, F., Karimi Yazdi, A., Ghasemi, M., et al. (2015) Results of Acellular Dermis Matrix Graft Used for Tympanoplasty in Guinea Pig Model. Iranian Journal of Otorhinolaryngology, 27, 95-100.
[16] Parekh, A., Mantle, B., Banks, J., et al. (2009) Repair of the Tympanic Membrane with Urinary Bladder Matrix. Laryngoscope, 119, 1206-1213.
https://doi.org/10.1002/lary.20233
[17] Spiegel, J.H. and Kessler, J.L. (2005) Tympanic Membrane Perforation Repair with Acellular Porcine Submucosa. Otology & Neurotology, 26, 563-566.
https://doi.org/10.1097/01.mao.0000169636.63440.4e
[18] 谭志强,刘映辰,彭韬,等. 脱细胞真皮基质与耳屏软骨-软骨膜修补鼓膜的临床对比研究[J]. 中国耳鼻咽喉头颈外科, 2021, 28(5): 281-284.
https://doi.org/10.16066/J.1672-7002.2021.05.005
[19] Schwarz, D., Pazen, D., Gosz, K., et al. (2016) Acoustic Properties of Collagenous Matrices of Xenogenic Origin for Tympanic Membrane Reconstruction. Otology & Neurotology, 37, 692-697.
https://doi.org/10.1097/MAO.0000000000001012
[20] Kim, S.H., Jeong, J.Y., Park, H.J., et al. (2017) Application of a Collagen Patch Derived from Duck Feet in Acute Tympanic Membrane Perforation. Tissue Engineering and Regenerative Medicine, 14, 233-241.
https://doi.org/10.1007/s13770-017-0039-0
[21] Yue, K., Trujillo-De Santiago, G., Alvarez, M.M., et al. (2015) Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels. Biomaterials, 73, 254-271.
https://doi.org/10.1016/j.biomaterials.2015.08.045
[22] Huang, P., Zhang, S., Gong, X., et al. (2018) Endoscopic Observation of Different Repair Patterns in Human Traumatic Tympanic Membrane Perforations. Brazilian Journal of Otorhinolaryngology, 84, 545-552.
https://doi.org/10.1016/j.bjorl.2017.06.011
[23] Levin, B., Redmond, S.L., Rajkhowa, R., et al. (2013) Utilising Silk Fibroin Membranes as Scaffolds for the Growth of Tympanic Membrane Keratinocytes, and Application to Myringoplasty Surgery. The Journal of Laryngology & Otology, 127, S13-S20.
https://doi.org/10.1017/S0022215112001661
[24] Levin, B., Redmond, S.L., Rajkhowa, R., et al. (2010) Preliminary Results of the Application of a Silk Fibroin Scaffold to Otology. OtolaryngologyHead and Neck Surgery, 142, S33-S35.
https://doi.org/10.1016/j.otohns.2009.06.746
[25] Kim, J., Kim, C.H., Park, C.H., et al. (2010) Comparison of Methods for the Repair of Acute Tympanic Membrane Perforations: Silk Patch vs. Paper Patch. Wound Repair and Regeneration, 18, 132-138.
https://doi.org/10.1111/j.1524-475X.2009.00565.x
[26] Sun, W., Gregory, D.A., Tomeh, M.A. and Zhao, X.B. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article 1499.
https://doi.org/10.3390/ijms22031499
[27] Kim, J., Kim, S.W., Choi, S.J., et al. (2011) A Healing Method of Tympanic Membrane Perforations Using Three-Dimensional Porous Chitosan Scaffolds. Tissue Engineering Part A, 17, 2763-2772.
https://doi.org/10.1089/ten.tea.2010.0533
[28] Lee, M.C., Seonwoo, H., Garg, P., et al. (2018) Chitosan/PEI Patch Releasing EGF and the EGFR Gene for the Regeneration of the Tympanic Membrane after Perforation. Biomaterials Science, 6, 364-371.
https://doi.org/10.1039/C7BM01061C
[29] Seonwoo, H., Kim, S.W., Kim, J., et al. (2013) Regeneration of Chronic Tympanic Membrane Perforation Using an EGF-Releasing Chitosan Patch. Tissue Engineering Part A, 19, 2097-2107.
https://doi.org/10.1089/ten.tea.2012.0617
[30] Zhou, S., Jin, K. and Buehler, M.J. (2021) Understanding Plant Biomass via Computational Modeling. Advanced Materials, 33, e2003206.
https://doi.org/10.1002/adma.202003206
[31] Martirani-Vonabercron, S.M. and Pacheco-Sánchez, D. (2023) Bacterial Cellulose: A Highly Versatile Nanomaterial. Microbial Biotechnology, 16, 1174-1178.
https://doi.org/10.1111/1751-7915.14243
[32] Kim, J., Kim, S.W., Park, S., et al. (2013) Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation. Advanced Healthcare Materials, 2, 1525-1531.
https://doi.org/10.1002/adhm.201200368
[33] De Oliveira Barud, H.G., Da Silva, R.R., Da Silva Barud, H., et al. (2016) A Multipurpose Natural and Renewable Polymer in Medical Applications: Bacterial Cellulose. Carbohydrate Polymers, 153, 406-420.
https://doi.org/10.1016/j.carbpol.2016.07.059
[34] Silveira, F.C., Pinto, F.C., Caldas Neto Sda, S., et al. (2016) Treatment of Tympanic Membrane Perforation Using Bacterial Cellulose: A Randomized Controlled Trial. Brazilian Journal of Otorhinolaryngology, 82, 203-208.
https://doi.org/10.1016/j.bjorl.2015.03.015
[35] Agarwal, S., Wendorff, J.H. and Greiner, A. (2009) Progress in the Field of Electrospinning for Tissue Engineering Applications. Advanced Materials, 21, 3343-3351.
https://doi.org/10.1002/adma.200803092
[36] Li, T., Tian, L., Liao, S., et al. (2019) Fabrication, Mechanical Property and in Vitro Evaluation of Poly (L-Lactic Acid-Co-ε-Caprolactone) Core-Shell Nanofiber Scaffold for Tissue Engineering. Journal of the Mechanical Behavior of Biomedical Materials, 98, 48-57.
https://doi.org/10.1016/j.jmbbm.2019.06.003
[37] Huang, B., Li, P., Chen, M., et al. (2022) Hydrogel Composite Scaffolds Achieve Recruitment and Chondrogenesis in Cartilage Tissue Engineering Applications. Journal of Nanobiotechnology, 20, Article No. 25.
https://doi.org/10.1186/s12951-021-01230-7
[38] Wang, Y., Wen, F., Yao, X., et al. (2021) Hybrid Hydrogel Composed of Hyaluronic Acid, Gelatin, and Extracellular Cartilage Matrix for Perforated TM Repair. Frontiers in Bioengineering and Biotechnology, 9, Article 811652.
https://doi.org/10.3389/fbioe.2021.811652
[39] Ilhan, E., Ulag, S., Sahin, A., et al. (2021) Fabrication of Tissue-Engineered Tympanic Membrane Patches Using 3D-Printing Technology. Journal of the Mechanical Behavior of Biomedical Materials, 114, Article ID: 104219.
https://doi.org/10.1016/j.jmbbm.2020.104219
[40] Huang, J., Teh, B.M., Eikelboom, R.H., et al. (2020) The Effectiveness of BFGF in the Treatment of Tympanic Membrane Perforations: A Systematic Review and Meta-Analysis. Otology & Neurotology, 41, 782-790.
https://doi.org/10.1097/MAO.0000000000002628
[41] Lou, Z., Lou, Z., Jin, K., et al. (2021) Topical Application of BFGF Alone for the Regeneration of Chronic Tympanic Membrane Perforations: A Preliminary Case Series. Stem Cells International, 2021, Article ID: 5583046.
https://doi.org/10.1155/2021/5583046
[42] Jang, C.H., Kim, W., Moon, C., et al. (2022) Bioprinted Collagen-Based Cell-Laden Scaffold with Growth Factors for Tympanic Membrane Regeneration in Chronic Perforation Model. IEEE Transactions on NanoBioscience, 21, 370-379.
https://doi.org/10.1109/TNB.2021.3085599
[43] Lou, Z.C., Lou, Z.H. and Tang, Y.M. (2016) Comparative Study on the Effects of EGF and BFGF on the Healing of Human Large Traumatic Perforations of the Tympanic Membrane. Laryngoscope, 126, E23-E28.
https://doi.org/10.1002/lary.25715
[44] 陈如如, 项海杰, 张初琴, 等. 重组牛碱性成纤维细胞生长因子治疗慢性鼓膜穿孔的相关机制及临床研究[J]. 中国耳鼻咽喉头颈外科, 2022, 29(8): 527-529, 515.
https://doi.org/10.16066/J.1672-7002.2022.08.012
[45] Li, X., Zhang, H. and Zhang, Y. (2022) Repair of Large Traumatic Tympanic Membrane Perforation Using Ofloxacin Otic Solution and Gelatin Sponge. Brazilian Journal of Otorhinolaryngology, 88, 9-14.
https://doi.org/10.1016/j.bjorl.2020.03.007
[46] Kanemaru, S.I., Kanai, R., Omori, K., et al. (2021) Multicenter Phase III Trial of Regenerative Treatment for Chronic Tympanic Membrane Perforation. Auris Nasus Larynx, 48, 1054-1060.
https://doi.org/10.1016/j.anl.2021.02.007
[47] Röösli, C., Von Büren, T., Gassmann, N.B. and Huber, A.M. (2011) The Impact of Platelet-Derived Growth Factor on Closure of Chronic Tympanic Membrane Perforations: A Randomized, Double-Blind, Placebo-Controlled Study. Otology & Neurotology, 32, 1224-1229.
https://doi.org/10.1097/MAO.0b013e31822e96bc
[48] Stavrakas, M., Karkos, P.D., Markou, K. and Grigoriadis, N. (2016) Platelet-Rich Plasma in Otolaryngology. The Journal of Laryngology & Otology, 130, 1098-1102.
https://doi.org/10.1017/S0022215116009403
[49] Gür, Ö.E., Ensari, N., Öztürk, M.T., et al. (2016) Use of a Platelet-Rich Fibrin Membrane to Repair Traumatic Tympanic Membrane Perforations: A Comparative Study. Acta Oto-Laryngologica, 136, 1017-1023.
https://doi.org/10.1080/00016489.2016.1183042
[50] Karataylı Özgürsoy, S., Tunçkaşık, M.E., Tunçkaşık, F., et al. (2017) Platelet-Rich Plasma Application for Acute Tympanic Membrane Perforations. The Journal of International Advanced Otology, 13, 195-199.
https://doi.org/10.5152/iao.2016.2533
[51] Gökçe Kütük, S. and Özdaş, T. (2019) Impact of Platelet-Rich Fibrin Therapy in Tympanoplasty Type 1 Surgery on Graft Survival and Frequency-Specific Hearing Outcomes: A Retrospective Analysis in Patients with Tympanic Membrane Perforation Due to Chronic Otitis Media. The Journal of Laryngology & Otology, 133, 1068-1073.
https://doi.org/10.1017/S0022215119002391
[52] Nair, N.P., Alexander, A., Abhishekh, B., et al. (2019) Safety and Efficacy of Autologous Platelet-Rich Fibrin on Graft Uptake in Myringoplasty: A Randomized Controlled Trial. International Archives of Otorhinolaryngology, 23, 77-82.
https://doi.org/10.1055/s-0038-1649495
[53] Chantepie, S.P., Michallet, M., Blaise, D., et al. (2015) Allogeneic Stem Cell Transplantation (Allo-SCT) for de novo Ph AML: A Study from the French Society of Bone Marrow Transplantation and Cell Therapy. Bone Marrow Transplantation, 50, 1586-1588.
https://doi.org/10.1038/bmt.2015.206
[54] Dupuis, V. and Oltra, E. (2021) Methods to Produce Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells: Mesenchymal Stem Cells From Induced Pluripotent Stem Cells. World Journal of Stem Cells, 13, 1094-1111.
https://doi.org/10.4252/wjsc.v13.i8.1094
[55] Shahal, D., Goncalves, S. and Angeli, S.I. (2022) Mesenchymal Stem Cells for Treatment of Delayed-Healing Tympanic Membrane Perforations Using Hyaluronate-Based Laminas as a Delivery System: An Animal Model with Histopathologic Study. Otology & Neurotology, 43, e497-e506.
https://doi.org/10.1097/MAO.0000000000003468
[56] Khasawneh, R.R., Abu-El-Rub, E., Serhan, A.O., et al. (2019) Cross Talk between 26S Proteasome and Mitochondria in Human Mesenchymal Stem Cells’ Ability to Survive Under Hypoxia Stress. The Journal of Physiological Sciences, 69, 1005-1017.
https://doi.org/10.1007/s12576-019-00720-6
[57] Koyuncu Irmak, D. and Karaoz, E. (2022) Generation of Induced Pluripotent Stem Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells. In: Nagy, A. and Turksen, K., Eds., Induced Pluripotent Stem (iPS) Cells, Humana, New York, 17-29.
https://doi.org/10.1007/7651_2021_445