妊娠早期血清学标志物预测妊娠期糖尿病的研究进展
Advancements in Early Pregnancy Serologic Markers to Predict Gestational Diabetes Mellitus
DOI: 10.12677/acm.2024.143890, PDF, HTML, XML, 下载: 36  浏览: 66 
作者: 钱 丹, 何佳佳*:重庆医科大学第一临床学院,重庆
关键词: 妊娠期糖尿病实验室指标预测总结Gestational Diabetes Serological Indicators Prediction Summary
摘要: 妊娠期糖尿病(gestational diabetes mellitus, GDM)是孕期常见的并发症之一,可能造成严重的不良妊娠结局,如妊娠期高血压、早产、巨大儿、剖宫产等,同时对孕产妇及新生儿的远期健康也可能造成不良影响,导致心血管疾病、2型糖尿病等疾病的风险升高。因此,早期识别GDM对于孕产妇及新生儿的健康而言至关重要。本文总结了妊娠早期对GDM具有预测价值的血清学标志物,以期对临床工作中早期预防GDM提供理论参考。
Abstract: Gestational diabetes mellitus (GDM) is one of the common complications during pregnancy, which may cause serious adverse pregnancy outcomes, such as gestational hypertension, preterm delivery, macrosomia, and cesarean section, etc. Meanwhile, it may also have an adverse effect on the long-term health of both mothers and newborns, which may lead to an increased risk of cardiovascular disease, type 2 diabetes mellitus, etc. Therefore, early recognition of GDM is crucial to the health of both mothers and newborns, and in this paper, we summarize the serological markers that have a predicative value of GDM at the first trimester of pregnancy, with the aim of providing theoretical references to the prevention of GDM at early stage of clinical work.
文章引用:钱丹, 何佳佳. 妊娠早期血清学标志物预测妊娠期糖尿病的研究进展[J]. 临床医学进展, 2024, 14(3): 1651-1658. https://doi.org/10.12677/acm.2024.143890

1. 引言

妊娠期糖尿病(gestational diabetes mellitus, GDM)是妊娠期高血糖的一种,是指在妊娠期间首次出现或首次被监测到的糖代谢异常 [1] 。随着我国糖尿病患病人数的快速增长,在过去十年里,GDM的患病率急剧升高,最近一篇纳入中国大陆21个地区共计79,064名参与者的meta分析提出,我国GDM发病率为14.8%,其中高龄孕妇的GDM发病率高达26.7%,大约为年轻孕妇的两倍 [2] 。另一项研究显示,由于“二孩”、“三孩”政策的实施,GDM的患病率已经从2010年的4%显着增加到2020年的21%,并且仍在逐年增长 [3] 。GDM对母儿的近远期健康都会产生不良影响,因此,早期识别并治疗GDM对临床工作者而言至关重要。在24~28周进行75 g口服葡萄糖耐量试验(OGTT)是我们目前诊断GDM最主要的方法 [1] ,此时可进行临床干预及治疗的时间较短,因此,目前国内外均有学者针对妊娠早期预测GDM的血清学指标进行研究,以期早期识别、预防GDM,尽量减少GDM对母婴健康造成的影响。本文主要总结了近年来关于孕早期预测GDM的相关血清学指标,以期为临床工作提供理论参考。

2. 糖代谢标志物

2.1. 空腹血糖(Fasting Blood Glucose, FPG)

空腹血糖对于妊娠期糖尿病的诊断、治疗及预后评估具有十分重要的作用。一系列研究显示,早孕期FPG升高是妊娠期糖尿病的独立危险因素之一,可以在一定程度上预测妊娠期糖尿病的发生 [4] 。有研究指出,在筛查GDM时,将FPG阈值定为4.7 mmol/l,能够在很大程度上早期预测GDM。FPG低于4.7 mmol/L的女性发生GDM相关不良妊娠结局的风险较低 [4] 。同时还有研究表明,孕前FPG升高与GDM发病率之间同样存在相关性,孕前及孕早期FPG升高的孕妇发生不良妊娠结局的风险更高,在非GDM孕妇中同样如此 [5] 。因此,早期测量FPG对于早期预测、识别GDM、预防不良妊娠结局而言具有十分重要的意义。

2.2. 糖化血红蛋白(HbA1c)

HbA1C是指红细胞中的血红蛋白与血清中的糖类结合的产物,反映了过去三个月人体的血糖水平。妊娠早期糖化血红蛋白水平与GDM风险增加有关。研究发现,妊娠早期HbA1c水平在5.7%~6.4%之间的女性更容易患GDM [6] ,因此可将妊娠早期的HbA1c水平视为GDM的预测因子 [7] [8] ,在一定程度上预测GDM的发生与发展。

2.3. 糖化白蛋白(Glycated Albumin, GA)

GA是血清中白蛋白与葡萄糖发生非酶促反应的产物,可以反映近一段时间的平均血糖水平,但目前的研究发现,血清糖化白蛋白与妊娠期糖尿病的发生并无较大关联,暂不能认为是GDM的预测因子 [9] 。

3. 脂代谢标志物

3.1. 甘油三酯(Triacylglycerol, TG)

脂质组学是筛选潜在生物标志物和建立预测模型的有效工具,孕早期的血浆脂质代谢产物与GDM的发病风险密切相关 [10] ,国内一项对病例对照研究对GDM患者和对照组的代谢组学进行分析,得到了41种GDM潜在生物标志物,其中大多数是脂质代谢物,如磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、花生四烯酰磷脂酸酯等,妊娠中、晚期GDM相关的5种代谢物也均为脂质代谢产物 [11] 。血脂评分每增加1分,GDM风险升高至原来的1.69倍 [12] 。因此我们认为可将脂代谢产物用于在妊娠早期识别患GDM风险较高的女性。研究发现,妊娠早、中期的血浆甘油二脂、甘油三酯与较高的GDM风险相关 [13] 。多项队列研究显示,尤其是TG (51:1)、TG (48:1)、磷脂酰胆碱(32:1)与GDM的发生呈显著正相关,并且在在对年龄、BMI等危险因素进行校正后这种相关性仍然成立 [14] 。非妊娠群体中,甘油二脂、甘油三酯的含量也与胰岛素抵抗、2型糖尿病等相关 [15] 。TG (51:1)、TG (48:1)、PC (32:1)可以用于在早孕期对GDM进行预测,具有中等预测性能,其预测价值与空腹血糖、HbA1c等相当 [14] 。

3.2. 总胆固醇(Total Cholesterol, TC)、低密度脂蛋白胆固醇(Low-Density Lipoprotein Cholesterol, LDL-C)、高密度脂蛋白胆固醇(High-Density Lipoprotein Cholesterol, HDL-C)

既往已经有研究证明,胆固醇水平在2型糖尿病、心血管疾病等的发生中都至关重要,2型糖尿病患者体内往往具有更高的胆固醇合成标志物和更低的胆固醇吸收标志物 [16] 。这种现象在妊娠人群中也同样存在。研究显示,GMD患者和非GDM孕妇的TG、TC、LDL-C、HDL-C水平都存在显著差异,TC、LDL-C与胆固醇合成有关,在GDM患者中的血清含量明显高于正常妊娠群体 [17] ,而HDL-C水平则与孕妇负荷后血糖呈负相关。除此之外,妊娠期间摄入膳食中胆固醇含量过高也会增加患GDM的风险 [18] ,因此,在妊娠早期衡量孕妇血清TC的水平尤为重要,对于TC水平高的孕妇,应尽早调整饮食模式以预防GDM的发生。

3.3. 脂联素

脂联素是由脂肪细胞分泌的一种内源性生物活性多肽或蛋白质,既往研究发现脂联素的水平与高血压、2型糖尿病等的发生相关,在肥胖人群中进行的一项研究发现,血清脂联素水平较低的人群发生高血压的风险是血清脂联素水平较高人群的1.99倍 [19] 。美国田纳西州的一项队列研究显示,血浆脂联素基线水平较低者发展为糖尿病前期、二型糖尿病的风险更高,脂联素基线水平每升高5 μg/mL,糖尿病前期进展率大约降低40% [20] 。脂联素水平在妊娠期间会发生变化,妊娠早期增加,妊娠中期达到最高 [21] 。脂联素影响糖、脂肪代谢 [22] ,调节肝脏代谢和糖异生,抑制脂肪生成并刺激脂肪酸氧化 [23] ,同时能改善肝脏胰岛素敏感性。母体血浆脂联素水平与脂肪肝的严重程度和GDM的发病风险相关 [24] ;此外,脂联素可增加肝脏和骨骼肌中的AMPK信号传导,导致骨骼肌中葡萄糖摄取增加,改善肝脏中的糖、脂质代谢、改善胰腺中β细胞存活及胰岛素合成、分泌 [25] 。因此,妊娠早期的脂联素水平降低也被认为是GDM的独立预测因素。

3.4. 瘦素

瘦素主要在白色脂肪组织中合成与分泌,可与胰岛β细胞上的瘦素受体结合,抑制胰岛素分泌,从而导致血糖升高 [26] 。研究表示,GDM患者的瘦素水平在妊娠早期就区别于非GDM孕妇,瘦素水平和脂联素/瘦素比值可以预测GDM发展,其中瘦素水平升高被证明是GDM的良好预测因子 [27] [28] [29] 。然而,肥胖是孕妇瘦素水平升高的主要原因,因此,在考虑将瘦素作为GDM的预测因素时,或许应该首先排除肥胖导致的一系列混杂因素。

3.5. 色素上皮衍生因子(Pigment Epithelium-Derived Factor, PEDF)

色素上皮衍生因子是一种分泌型糖蛋白,可导致肥胖患者、2型糖尿病患者的胰岛素抵抗 [30] 。研究发现,PEDF通过抑制胰岛素信号通路诱导胰岛素抵抗,GDM孕妇体内的PEDF水平明显高于正常妊娠孕妇,因此,PEDF或许能被认为是孕期糖代谢异常的标志物,用于协助GDM的早期诊断和干预 [31] 。

4. 免疫细胞

目前有部分研究认为GDM的发生可能是由于母体免疫系统对妊娠的异常适应以及炎症因子上调,引起免疫失衡,从而导致内皮功能障碍和血管炎性病变。同时,母体的高血糖环境也会进一步导致免疫功能障碍,加重GDM的发生,引起各种不良妊娠结局 [32] 。因此,妊娠早期母体血浆中的免疫细胞及细胞因子可能也对GDM的发生产生影响。一项横断面研究发现,GDM患者体内的白细胞、淋巴细胞以及血小板计数都显著高于对照组,此外,淋巴细胞/HDL-C、粒细胞/HDL-C、单核细胞/HDL-C三者比值在GDM患者中显著增高,其中淋巴细胞/HDL-C对于GDM具有最高的预测价值和准确性 [33] 。此外,来自湖北武汉的另一项前瞻性研究也显示,妊娠早、中期孕妇体内较高水平的白细胞、中性粒细胞、单核细胞、中性粒细胞/淋巴细胞比值(NLR)与较高的GDM风险相关 [34] ,这些指标在早期预测GDM的发生中也存在较大的作用。

5. 其他

5.1. 半乳糖凝集素-13 (Galectin-13, Gal-13)

半乳糖凝集素-13是指β-半乳糖结合凝集素,是妊娠期母体免疫反应和胎盘的主要调节因子 [35] ,对胰岛细胞的功能产生抑制,从而影响GDM的发生与发展 [36] ,可作为GDM的独立预测因子。

5.2. 胰高血糖素样肽-1 (Glucagon-Like Peptide 1, GLP-1)

胰高血糖素样肽-1是一种主要由肠道细胞分泌产生的激素,与胰岛素的分泌呈正相关。同时GLP-1高水平还有助于控制新生儿体重,预防GDM孕妇中巨大儿的发生 [37] 。GLP-1在妊娠期间的血糖调节中起重要作用,对GDM不良妊娠结局的发生具有独立预测价值 [38] 。但也有研究提出,GLP-1仅仅影响胰岛素抵抗,而在GDM的发生、发展过程中并无显著作用 [39] ,因此,关于GLP-1对GDM的影响可能仍需要进一步研究。

5.3. 血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)

血管内皮生长因子是一种重要的细胞因子,当其处于正常水平时,有助于健康妊娠的维持;而当其表达失衡时,则可能导致一系列妊娠并发症的发生,如子痫、妊娠期糖尿病等 [40] 。VEGF同样也是GDM患者不良妊娠结局的独立危险因素,有研究显示,Gal-13、GLP-1、VEGF三者联合预测GDM的敏感度和特异性最高,三者联合检测有助于提高GDM的预测诊断价值 [41] 。

5.4. 尿酸

血清尿酸升高被认为是糖尿病发生的标志物和预测因子之一 [42] ,尿酸水平升高增加氧化应激 [43] ,同时导致内皮功能障碍和一氧化氮减少,增加胰岛素抵抗,最终导致血糖水平升高 [44] 。多项研究显示,孕早期高尿酸血症和胰岛素抵抗增加及GDM的发生显著相关 [45] [46] 。因此可以认为孕早期血清尿酸水平升高是GDM发生的危险因素之一 [47] ,对GDM的发生具有显著的预测价值。此外,还有研究证实,孕前6个月的血清尿酸水平同样是GDM发生的独立危险因素 [48] 。因此,对于血清尿酸水平升高的孕妇更应警惕GDM的发生。

5.5. C肽

C肽是由胰岛β细胞分泌,能准确反映胰岛素的含量和胰岛细胞的功能。在一般人群中,血清C肽升高与2型糖尿病的风险增加相关 [49] ,在孕妇群体中,同样有研究证明C肽升高会导致GDM患病风险增加。早孕期C肽水平升高的孕妇发生GDM的风险更高 [50] ,在预测GDM的发生、发展中具有重要的价值。

5.6. G蛋白偶联受体120 (G-Protein Coupled Receptor 120, GRP120)

GPR120也称为游离脂肪酸受体4,参与脂肪组织中的能量代谢和脂肪生成,与多种疾病的发生发展相关。研究显示,GDM患者在妊娠早期具有更高的GPR120水平,同时包含GPR120在内的预测模型对于GDM具有更好的预测性能 [51] 。但是,目前关于GPR120与GDM相关性的机制仍未明确,可能是由于GPR120导致脂质代谢紊乱,进一步增加GDM的发病风险。相关的机制仍然需要进行进一步探索。

5.7. 狭缝引导配体2 (Slit Guidance Ligand 2, Slit-2)

Slit-2是一种新型脂肪蛋白,是一种由米色脂肪细胞分泌的因子,Katrin J Svensson等的研究发现,向高脂饮食诱导肥胖的小鼠体内注射表达Slit-2的腺病毒载体,可显著改善小鼠的葡萄糖耐量,这证明Slit-2能在一定程度上改善糖脂代谢 [52] 。Slit-2还被证实与自发性流产、先兆流产 [53] 、自发性早产、胎儿生长受限 [54] 等不良妊娠结局有关。国内的一项横断面研究显示,GDM患者母体外周血和新生儿脐带血中的Slit-2水平均显著升高,Slit-2可能是GDM的危险因素,并与GDM的发病机制密切相关 [55] ,这也为GDM的早期识别、预防和调控提供了新的思路。

5.8. 妊娠相关血浆蛋白A (PAPP-A)

PAPP-A是一种胎盘分泌的高分子量蛋白,可裂解胰岛素样生长因子结合蛋白,研究显示,妊娠早期PAPP-A浓度降低的孕妇可能更容易在孕中期发生GDM [56] 。此外,研究还发现,妊娠早期PAPP-A水平降低与早产、小于胎龄儿等不良妊娠结局也存在相关性 [57] ,在中国深圳进行的一项纳入1585人的回顾性研究提出,PAPP-A可能是GDM发展的独立危险因素 [58] 。但是,单独使用PAPP-A预测GDM的准确性和敏感性并不理想 [57] ,PAPP-A对GDM的预测价值仍然需要进一步研究确定。

6. 总结与展望

GMD是妊娠期最常见的并发症,随着生活水平的提高,“二胎”、“三胎”政策的放开,GDM的发病率逐年上升,早期识别、预防及控制GDM的发生至关重要。本文总结了妊娠早期对GDM具有预测价值的相关血清学标志物,这些指标对于GDM都具有一定的预测性能,然而单个指标的预测价值是有限的,在接下来的研究中,我们可能需要进一步研究如何将多个指标联合起来,构建一个敏感性更高、准确性更强的预测模型,为临床工作中早期识别并预防GDM的发生提供理论参考。

NOTES

*通讯作者。

参考文献

[1] 中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022) [第一部分] [J]. 中华妇产科杂志, 2022, 57(1): 3-12.
[2] Gao, C., Sun, X., Lu, L., et al. (2019) Prevalence of Gestational Diabetes Mellitus in Mainland China: A Systematic Review and Meta-Analysis. Journal of Diabetes Investigation, 10, 154-162.
https://doi.org/10.1111/jdi.12854
[3] Zhu, H., Zhao, Z., Xu, J., et al. (2022) The Prevalence of Gestational Diabetes Mellitus before and after the Implementation of the Universal Two-Child Policy in China. Frontiers in Endocrinology, 13, Article 960877.
https://doi.org/10.3389/fendo.2022.960877
[4] Rai, A.S., Sletner, L., Jenum, A.K., et al. (2023) Employing Fasting Plasma Glucose to Safely Limit the Use of Oral Glucose Tolerance Tests in Pregnancy: A Pooled Analysis of Four Norwegian Studies. Frontiers in Endocrinology, 14, Article 1278523.
https://doi.org/10.3389/fendo.2023.1278523
[5] Alwash, S., McIntyre, D. and Mamun, A. (2023) The Pre-Pregnancy Fasting Blood Glucose, Glycated Hemoglobin and Lipid Profiles as Blood Biomarkers for Gestational Diabetes Mellitus: Evidence from a Multigenerational Cohort Study. The Journal of Maternal-Fetal & Neonatal Medicine, 36, Article ID: 2195524.
https://doi.org/10.1080/14767058.2023.2195524
[6] Kattini, R., Hummelen, R. and Kelly, L. (2020) Early Gestational Diabetes Mellitus Screening with Glycated Hemoglobin: A Systematic Review. Journal of Obstetrics and Gynaecology Canada, 42, 1379-1384.
https://doi.org/10.1016/j.jogc.2019.12.015
[7] Arbib, N., Shmueli, A., Salman, L., et al. (2019) First Trimester Glycosylated Hemoglobin as a Predictor of Gestational Diabetes Mellitus. International Journal of Gynaecology and Obstetrics, 145, 158-163.
https://doi.org/10.1002/ijgo.12794
[8] Singh, V. and Warman, S. (2023) Association of Early Pregnancy Values of Glycosylated Hemoglobin and the Development of Gestational Diabetes Mellitus. Cureus, 15, e46685.
https://doi.org/10.7759/cureus.46685
[9] Pang, W.W., Hinkle, S.N., Wu, J., et al. (2023) A Longitudinal Study of Plasma Glycated Albumin across Pregnancy and Associations with Maternal Characteristics and Cardiometabolic Biomarkers. Clinical Chemistry, 69, 1420-1428.
https://doi.org/10.1093/clinchem/hvad172
[10] Zhang, Z., Zhou, Z. and Li, H. (2024) The Role of Lipid Dysregulation in Gestational Diabetes Mellitus: Early Prediction and Postpartum Prognosis. Journal of Diabetes Investigation, 15, 15-25.
https://doi.org/10.1111/jdi.14119
[11] Zhan, Y., Wang, J., He, X., et al. (2021) Plasma Metabolites, Especially Lipid Metabolites, Are Altered in Pregnant Women with Gestational Diabetes Mellitus. Clinica Chimica Acta, 517, 139-148.
https://doi.org/10.1016/j.cca.2021.02.023
[12] Wang, Y., Wu, P., Huang, Y., et al. (2022) BMI and Lipidomic Biomarkers with Risk of Gestational Diabetes in Pregnant Women. Obesity, 30, 2044-2054.
https://doi.org/10.1002/oby.23517
[13] Rahman, M.L., Feng, Y.A., Fiehn, O., et al. (2021) Plasma Lipidomics Profile in Pregnancy and Gestational Diabetes Risk: A Prospective Study in a Multiracial/Ethnic Cohort. BMJ Open Diabetes Research & Care, 9, e001551.
https://doi.org/10.1136/bmjdrc-2020-001551
[14] Lu, L., Koulman, A., Petry, C.J., et al. (2016) An Unbiased Lipidomics Approach Identifies Early Second Trimester Lipids Predictive of Maternal Glycemic Traits and Gestational Diabetes Mellitus. Diabetes Care, 39, 2232-2239.
https://doi.org/10.2337/dc16-0863
[15] Razquin, C., Liang, L., Toledo, E., et al. (2018) Plasma Lipidome Patterns Associated with Cardiovascular Risk in the PREDIMED Trial: A Case-Cohort Study. International Journal of Cardiology, 253, 126-132.
https://doi.org/10.1016/j.ijcard.2017.10.026
[16] De Mello, V.D., Lindström, J., Eriksson, J.G., et al. (2015) Markers of Cholesterol Metabolism as Biomarkers in Predicting Diabetes in the Finnish Diabetes Prevention Study. Nutrition, Metabolism, and Cardiovascular Diseases, 25, 635-642.
https://doi.org/10.1016/j.numecd.2015.03.012
[17] Cao, W., Wang, X., Chen, T., et al. (2018) Maternal Lipids, BMI and IL-17/IL-35 Imbalance in Concurrent Gestational Diabetes Mellitus and Preeclampsia. Experimental and Therapeutic Medicine, 16, 427-435.
https://doi.org/10.3892/etm.2018.6144
[18] Cui, N., Li, Y., Huang, S., et al. (2023) Cholesterol-Rich Dietary Pattern during Early Pregnancy and Genetic Variations of Cholesterol Metabolism Genes in Predicting Gestational Diabetes Mellitus: A Nested Case-Control Study. The American Journal of Clinical Nutrition, 118, 966-976.
https://doi.org/10.1016/j.ajcnut.2023.08.017
[19] Jung, D.H., Kim, J.Y., Kim, J.K., et al. (2014) Relative Contribution of Obesity and Serum Adiponectin to the Development of Hypertension. Diabetes Research and Clinical Practice, 103, 51-56.
https://doi.org/10.1016/j.diabres.2013.09.018
[20] Jiang, Y., Owei, I., Wan, J., et al. (2016) Adiponectin Levels Predict Prediabetes Risk: The Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) Study. BMJ Open Diabetes Research & Care, 4, e000194.
https://doi.org/10.1136/bmjdrc-2016-000194
[21] Fuglsang, J., Skjaerbaek, C., Frystyk, J., et al. (2006) A Longitudinal Study of Serum Adiponectin during Normal Pregnancy. BJOG: An International Journal of Obstetrics and Gynaecology, 113, 110-113.
https://doi.org/10.1111/j.1471-0528.2005.00792.x
[22] Han, W., Yang, S., Xiao, H., et al. (2022) Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders. International Journal of Molecular Sciences, 23, Article 15627.
https://doi.org/10.3390/ijms232415627
[23] Awazawa, M., Ueki, K., Inabe, K., et al. (2009) Adiponectin Suppresses Hepatic SREBP1c Expression in an AdipoR1/LKB1/AMPK Dependent Pathway. Biochemical and Biophysical Research Communications, 382, 51-56.
https://doi.org/10.1016/j.bbrc.2009.02.131
[24] Lee, S.M., Kwak, S.H., Koo, J.N., et al. (2019) Non-Alcoholic Fatty Liver Disease in the First Trimester and Subsequent Development of Gestational Diabetes Mellitus. Diabetologia, 62, 238-248.
https://doi.org/10.1007/s00125-018-4779-8
[25] Moyce Gruber, B.L. and Dolinsky, V.W. (2023) The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life, 13, Article 301.
https://doi.org/10.3390/life13020301
[26] Yadav, A., Kataria, M.A., Saini, V. and Yadav, A. (2013) Role of Leptin and Adiponectin in Insulin Resistance. Clinica Chimica Acta, 417, 80-84.
https://doi.org/10.1016/j.cca.2012.12.007
[27] Florian, A.R., Cruciat, G., Pop, R.M., et al. (2021) Predictive Role of Altered Leptin, Adiponectin and 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropanoic Acid Secretion in Gestational Diabetes Mellitus. Experimental and Therapeutic Medicine, 21, Article No. 520.
https://doi.org/10.3892/etm.2021.9951
[28] Bawah, A.T., Seini, M.M., Abaka-Yawason, A., et al. (2019) Leptin, Resistin and Visfatin as Useful Predictors of Gestational Diabetes Mellitus. Lipids in Health and Disease, 18, Article No. 221.
https://doi.org/10.1186/s12944-019-1169-2
[29] Cengiz, T., Öncel, M., Toka Özer, T., et al. (2023) Association of Leptin with Glucose Intolerance and Gestational Diabetes Mellitus in Pregnant Women: Prospective Analytical Case-Control Study. Reproductive Sciences, 31, 773-778.
https://doi.org/10.1007/s43032-023-01354-1
[30] Carnagarin, R., Dharmarajan, A.M. and Dass, C.R. (2015) PEDF-Induced Alteration of Metabolism Leading to Insulin Resistance. Molecular and Cellular Endocrinology, 401, 98-104.
https://doi.org/10.1016/j.mce.2014.11.006
[31] Qi, W., Zhu, D., Yin, P., et al. (2023) Pigment Epithelium-Derived Factor, a Novel Adipokine, Contributes to Gestational Diabetes Mellitus. The Journal of Clinical Endocrinology and Metabolism, 109, e356-e369.
https://doi.org/10.1210/clinem/dgad413
[32] Berbudi, A., Rahmadika, N., Tjahjadi, A.I., et al. (2020) Type 2 Diabetes and Its Impact on the Immune System. Current Diabetes Reviews, 16, 442-449.
https://doi.org/10.2174/1573399815666191024085838
[33] Fagninou, A., Nekoua, M.P., Fiogbe, S.E.M., et al. (2022) Predictive Value of Immune Cells in the Risk of Gestational Diabetes Mellitus: A Pilot Study. Frontiers in Clinical Diabetes and Healthcare, 3, Article 819164.
https://doi.org/10.3389/fcdhc.2022.819164
[34] Ye, Y.X., Wang, Y., Wu, P., et al. (2023) Blood Cell Parameters from Early to Middle Pregnancy and Risk of Gestational Diabetes Mellitus. The Journal of Clinical Endocrinology and Metabolism, 108, e1702-e1711.
https://doi.org/10.1210/clinem/dgad336
[35] Oravecz, O., Romero, R., Tóth, E., et al. (2022) Placental Galectins Regulate Innate and Adaptive Immune Responses in Pregnancy. Frontiers in Immunology, 13, Article 1088024.
https://doi.org/10.3389/fimmu.2022.1088024
[36] Chen, M., Shi, J.L., Zheng, Z.M., et al. (2022) Galectins: Important Regulators in Normal and Pathologic Pregnancies. International Journal of Molecular Sciences, 23, Article 10110.
https://doi.org/10.3390/ijms231710110
[37] Fritsche, L., Heni, M., Eckstein, S.S., et al. (2022) Incretin Hypersecretion in Gestational Diabetes Mellitus. The Journal of Clinical Endocrinology and Metabolism, 107, e2425-e2430.
https://doi.org/10.1210/clinem/dgac095
[38] Mosavat, M., Omar, S.Z., Jamalpour, S., et al. (2020) Serum Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) in Association with the Risk of Gestational Diabetes: A Prospective Case-Control Study. Journal of Diabetes Research, 2020, Article ID: 9072492.
https://doi.org/10.1155/2020/9072492
[39] Jones, D.L., Petry, C.J., Burling, K., et al. (2023) Pregnancy Glucagon-Like Peptide 1 Predicts Insulin but Not Glucose Concentrations. Acta Diabetologica, 60, 1635-1642.
https://doi.org/10.1007/s00592-023-02142-8
[40] Bolatai, A., He, Y. and Wu, N. (2022) Vascular Endothelial Growth Factor and Its Receptors Regulation in Gestational Diabetes Mellitus and Eclampsia. Journal of Translational Medicine, 20, Article No. 400.
https://doi.org/10.1186/s12967-022-03603-4
[41] 符剑花, 霍娟, 韩燕媚, 等. 血清Gal-13和GLP-1及VEGF水平对妊娠期糖尿病不良妊娠结局的预测价值[J]. 中华预防医学杂志, 2023, 57(12): 2140-2146.
[42] Singh, U., Mehrotra, S., Singh, R., et al. (2015) Serum Uric Acid: A Novel Risk Factor for Gestational Diabetes Mellitus. The Journal of Medical Research, 3, 10-12.
https://doi.org/10.31254/jmr.2015.1105
[43] Sautin, Y.Y., Nakagawa, T., Zharikov, S., et al. (2007) Adverse Effects of the Classic Antioxidant Uric Acid in Adipocytes: NADPH Oxidase-Mediated Oxidative/Nitrosative Stress. American Journal of Physiology: Cell Physiology, 293, C584-C596.
https://doi.org/10.1152/ajpcell.00600.2006
[44] Pleskacova, A., Bartakova, V., Chalasova, K., et al. (2018) Uric Acid and Xanthine Levels in Pregnancy Complicated by Gestational Diabetes Mellitus-The Effect on Adverse Pregnancy Outcomes. International Journal of Molecular Sciences, 19, Article 3696.
https://doi.org/10.3390/ijms19113696
[45] Weisz, B., Cohen, O., Homko, C.J., et al. (2005) Elevated Serum Uric Acid Levels in Gestational Hypertension Are Correlated with Insulin Resistance. American Journal of Perinatology, 22, 139-144.
https://doi.org/10.1055/s-2005-863786
[46] Zhao, Y., Zhao, Y., Fan, K., et al. (2022) Serum Uric Acid in Early Pregnancy and Risk of Gestational Diabetes Mellitus: A Cohort Study of 85,609 Pregnant Women. Diabetes & Metabolism, 48, Article ID: 101293.
https://doi.org/10.1016/j.diabet.2021.101293
[47] Laughon, S.K., Catov, J., Provins, T., et al. (2009) Elevated First-Trimester Uric Acid Concentrations Are Associated with the Development of Gestational Diabetes. American Journal of Obstetrics and Gynecology, 201, 402.E1-402.E5.
https://doi.org/10.1016/j.ajog.2009.06.065
[48] Ghanei, A., Mohammadzade, G., Gholami Banadkoki, M., et al. (2023) The Predictive Role of Serum Uric Acid Levels before Pregnancy in the Development of Gestational Diabetes Mellitus. Diabetology International, 15, 123-129.
https://doi.org/10.1007/s13340-023-00662-w
[49] Sokooti, S., Kieneker, L.M., Borst, M.H., et al. (2020) Plasma C-Peptide and Risk of Developing Type 2 Diabetes in the General Population. Journal of Clinical Medicine, 9, Article 3001.
https://doi.org/10.3390/jcm9093001
[50] Yang, X., Ye, Y., Wang, Y., et al. (2022) Association between Early-Pregnancy Serum C-Peptide and Risk of Gestational Diabetes Mellitus: A Nested Case-Control Study among Chinese Women. Nutrition & Metabolism, 19, Article No. 56.
https://doi.org/10.1186/s12986-022-00691-3
[51] He, Q., Lin, M., Wu, Z. and Yu, R.Q. (2023) Predictive Value of First-Trimester GPR120 Levels in Gestational Diabetes Mellitus. Frontiers in Endocrinology, 14, Article 1220472.
https://doi.org/10.3389/fendo.2023.1220472
[52] Svensson, K.J., Long, J.Z., Jedrychowski, M.P., et al. (2016) A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metabolism, 23, 454-466.
https://doi.org/10.1016/j.cmet.2016.01.008
[53] Li, P., Peng, H., Lu, W.H., et al. (2015) Role of Slit2/Robo1 in Trophoblast Invasion and Vascular Remodeling during Ectopic Tubal Pregnancy. Placenta, 36, 1087-1094.
https://doi.org/10.1016/j.placenta.2015.08.002
[54] Tiensuu, H., Haapalainen, A.M., Karjalainen, M.K., et al. (2019) Risk of Spontaneous Preterm Birth and Fetal Growth Associates with Fetal SLIT2. PLOS Genetics, 15, e1008107.
https://doi.org/10.1371/journal.pgen.1008107
[55] Wang, Y., Zhao, S., Peng, W., et al. (2022) The Role of Slit-2 in Gestational Diabetes Mellitus and Its Effect on Pregnancy Outcome. Frontiers in Endocrinology, 13, Article 889505.
https://doi.org/10.3389/fendo.2022.889505
[56] Caliskan, R., Atis, A., Aydin, Y., et al. (2020) PAPP-A Concentrations Change in Patients with Gestational Diabetes. Journal of Obstetrics and Gynaecology, 40, 190-194.
https://doi.org/10.1080/01443615.2019.1615041
[57] Borna, S., Ashrafzadeh, M., Ghaemi, M., et al. (2023) Correlation between PAPP-A Serum Levels in the First Trimester of Pregnancy with the Occurrence of Gestational Diabetes, a Multicenter Cohort Study. BMC Pregnancy and Childbirth, 23, Article No. 847.
https://doi.org/10.1186/s12884-023-06155-7
[58] Xiao, D., Chenhong, W., Yanbin, X., et al. (2018) Gestational Diabetes Mellitus and First Trimester Pregnancy-Associated Plasma Protein A: A Case-Control Study in a Chinese Population. Journal of Diabetes Investigation, 9, 204-210.
https://doi.org/10.1111/jdi.12672