代谢综合征与结直肠息肉相关性的研究进展
Research Progress on the Correlation between Metabolic Syndrome and Colorectal Polyps
DOI: 10.12677/acm.2024.143901, PDF, HTML, XML, 下载: 39  浏览: 59 
作者: 王欣然, 桑荣霞:石家庄市人民医院消化内科,河北 石家庄
关键词: 代谢综合征结直肠息肉Metabolic Syndrome Colorectal Polyps
摘要: 代谢综合征(MetS)是包括肥胖、糖尿病、高血压、血脂异常等多种代谢疾病在内的一组临床综合征。结直肠息肉是结直肠粘膜突出肠腔的隆起性病变,依据病理特征可将其分为腺瘤性息肉和非腺瘤性息肉。现有研究表明,腺瘤性息肉进一步发展可致结直肠癌(CRC)。MetS被认为是CRC发生和发展的危险因素。近年来,有关研究针对MetS与结直肠息肉的关系展开,本文综述了MetS与结直肠息肉的相关性,同时对研究前景进行展望。
Abstract: Metabolic syndrome (MetS) is a group of clinical syndromes including obesity, diabetes, hypertension, dyslipidemia and other metabolic diseases. Colorectal polyps are raised lesions of the colorectal mucosa protruding from the intestinal lumen and can be divided into adenomatous polyps and non-adenomatous polyps according to pathological features. Existing studies have shown that further development of adenomatous polyps can lead to colorectal cancer (CRC). MetS is considered a risk factor for the occurrence and progression of CRC. In recent years, relevant studies have focused on the relationship between MetS and colorectal polyps, and this article reviews the correlation between MetS and colorectal polyps, and looks forward to the research prospects.
文章引用:王欣然, 桑荣霞. 代谢综合征与结直肠息肉相关性的研究进展[J]. 临床医学进展, 2024, 14(3): 1733-1740. https://doi.org/10.12677/acm.2024.143901

1. 引言

结直肠息肉是指结直肠黏膜突出到肠腔的隆起性病变,是一种常见的消化系统疾病。根据Morsom组织病理学分类法,将结直肠息肉分为腺瘤性息肉和非腺瘤性息肉,以前者更为多见。腺瘤性息肉被认为是结直肠癌(colorectal cancer, CRC)重要的癌前病变,占所有癌前病变的85%~90% [1] ,与CRC发生密切相关,目前公认“腺瘤–癌”途径是CRC发生的重要机制 [2] 。CRC在全球范围内呈现“两高”的特点,即高发病率和高死亡率,分别位居第三位和第二位 [3] ,是全球癌症治疗的重要负担。早期识别结直肠息肉发生的危险因素,及时阻断正常黏膜向癌前病变甚至癌症的演变过程,是防治CRC的关键。代谢综合征(metabolic syndrome, MetS)是一类涉及多种代谢异常的临床综合征,主要包含有肥胖、高血压、糖代谢异常、脂代谢异常等。多项研究表明,患有MetS及其组分的个体CRC患病风险更高 [4] [5] [6] ,而结直肠息肉作为CRC可能的癌前病变,近年来也被广泛研究。本文就MetS与结直肠息肉的相关性的研究进展进行综述。

2. MetS的定义和诊断

MetS被世界卫生组织(WHO)定义为以肥胖、胰岛素抵抗、脂代谢异常、高血压等代谢紊乱聚集于同一个体为特征的症候群。自MetS提出以来,在不同地区和机构间的定义存在差异,但差异很小。国际糖尿病联盟(International Diabetes Federation, IDF)、欧洲胰岛素抵抗研究小组(The European Group for the Study of Insul in Resistance, EGIR)、美国内分泌医师学会(American Association of Clinical Endocrinologists, AACE)、美国国家胆固醇教育计划(American National Cholesterol Education Program, NCEP)等均有自己的诊断标准,我国中华医学会糖尿病学分会根据我国人群代谢特点也提出了更为合适的MetS诊断标准,为相关研究开展和临床诊治活动提供依据。据美国医学会统计,2011~2016年约有36.9%的成年人确诊为MetS,其中60岁以上人群MetS患病率更是高达48.6%,20~49岁中青年MetS患病率也显著增加 [7] 。在全球其他地区,MetS也存在较高的患病率,MetS已然成为影响全球公共卫生的主要问题。

3. MetS和息肉的关系

息肉是空腔脏器内凸生长的黏膜“赘生物”,可发生于胃肠腔、子宫腔和胆囊等部位。MetS的发病机制尚不明确,但被认为是一种全身性代谢紊乱疾病。目前研究表明MetS及其相关组分有可能通过胰岛素抵抗、氧化应激、炎症反应等途径驱动结直肠息肉的发生、发展 [5] [8] 。在一项有关子宫内膜息肉的研究中 [9] ,多因素分析发现MetS是子宫内膜息肉的重要危险因素。ROC曲线分析表明,MetS是研究组中最重要的鉴别危险因素,AUC为0.789 (0.691~0.887; CI 95%)。Bueloni-Dias,Flavia Neves [10] 等还发现MetS的存在是绝经后妇女子宫内膜息肉的预测因素。此外,近期在一项鼻息肉相关研究中 [11] ,MetS独立增加了鼻息肉患者术后复发的风险,并且随着MetS成分数量的增加,风险也随之增加。由此可见,MetS可能是息肉发生的共同危险因素。

4. MetS和结直肠息肉的关系

4.1. 肥胖和结直肠息肉的关系

肥胖是MetS的重要组成部分,包括体脂含量增加和脂肪分布异常,由于考虑不同人种间的差异、测量方法的局限性以及地各个区域间的特异性,肥胖的切点值仍不断完善。2005年,国际糖尿病联盟(IDF)颁布的MetS诊断标准以中心性肥胖为核心,将中心性肥胖(腹型肥胖)作为诊断MetS的必要条件,并建议针对不同种族特点选取切点值。在此背景下,Naomi Fliss-Isakov等 [6] 研究选取腹型肥胖切点值(腰围:女性 > 88 cm,男性 > 102 cm),发现腹型肥胖是结直肠腺瘤性息肉的独立危险因素,这有利于识别患结直肠腺瘤的高危人群。以腰围为代表的中心性肥胖是异时性结直肠腺瘤的重要预测因子,与BMI和其他代谢变量无关。但有研究发现,在腰围及BMI正常的中国人仍然有14%腹型肥胖患者 [12] ,这提示有必要进一步发掘肥胖评估指标以提高判定准确性。近年来,基于CT影像技术的内脏脂肪测量为研究肥胖对结直肠腺瘤发生的影响提供了支持。有学者通过前瞻性研究发现内脏脂肪含量与结直肠腺瘤风险呈正相关,并且与结直肠腺瘤的复发独立相关,但皮下脂肪组织的变化与结直肠腺瘤无关 [13] 。另一项有关研究认为,内脏脂肪组织面积(VAT)和内脏总脂肪比与结直肠腺瘤发生风险呈正相关,但与结直肠癌并无明显相关性 [14] 。内脏脂肪可能作为肥胖判定的一项潜在指标,为MetS诊断提供参考。肥胖驱动结直肠息肉进展的具体机制可能与肥胖者常伴胰岛素抵抗、体内呈慢性炎症反应状态和瘦素分泌较多等因素有关 [15] 。选择合适的评价方法和标准进行肥胖界定是MetS准确诊断的关键。

4.2. 糖代谢和结直肠息肉的关系

糖代谢异常对结直肠息肉的发生和发展均有促进作用。胰岛素是体内唯一的降糖激素,对维持机体糖代谢正常有序地进行具有重要意义。目前多数研究表明,胰岛素抵抗、高胰岛素血症、胰岛素样生长因子(insulin-like growth factor, IGF)-1和葡萄糖依赖性促胰岛素释放肽(glucose-dependent insulin releasing peptide, GIP)与MetS有关,被认为在结直肠息肉发生、发展环节扮演重要角色。胰岛素抵抗可使体内IGF-1水平增加 [16] ,进而促进结直肠息肉的发生甚至向癌症转化。Swethan Alagaratnam等 [17] 研究分别对结直肠癌、结直肠息肉和正常结直肠组织进行IGF-1Ec表达的免疫组化,结果发现与正常结肠组织相比,IGF-1Ec在结直肠癌和息肉中显着过表达。另在一项有关中国人群的研究中,IGF-1被确定为女性腺瘤性息肉的独立危险因素 [18] 。GIP是一种由上小肠上皮内分泌K细胞分泌的42个氨基酸的多肽,是第一个确定的肠促胰岛素 [19] [20] 。GIP可以刺激胰岛分泌胰岛素,病理性过程表现为高胰岛素血症。Sasaki等 [21] 研究结果表明空腹GIP水平的升高增加了结直肠腺瘤的患病风险。临床前和遗传学研究表明,与GIP相对应的葡萄糖依赖性促胰岛素多肽受体(GIPR)信号转导受损会恶化血糖控制,并且因此引起的葡萄糖稳态受损显著增加了结直肠癌的患病风险 [22] 。这说明空腹GIP水平和葡萄糖稳态受损可能是结直肠腺瘤和癌症发生的危险因素。

4.3. 脂代谢和结直肠息肉的关系

脂代谢异常是MetS患者容易发生结直肠息肉的重要因素。既往多数研究发现MetS增加了结直肠息肉的患病风险 [23] ,其组分中血脂水平异常被认为是独立危险因素 [24] 。Chao-Tao Tang等 [25] 研究表明与迟发型患者相比,早发型结直肠腺瘤患者HDL-C水平较低,而甘油三酯水平较高,并且HDL-C水平与肿瘤大小呈负相关。有学者发现 [26] ,氧化低密度脂蛋白(oxLDL)在腺瘤性息肉早期阶段可以检测到,并且oxLDL增加代表更高的氧化应激水平,与患者预后不良有关。该指标是监测早期腺瘤性息肉发生和发展的新型标志物,为早期筛查提供参考。基于超高效液相色谱–高分辨质谱–电喷雾电离联用技术(UHPLC-ESI-HRMS)的血清非靶向脂质组学有助于发现结直肠腺瘤的生物标志物,相关研究认为磷脂酰胆碱和鞘磷脂是区分结直肠晚期腺瘤与癌症的主要脂类紊乱标志物 [27] ,甘油三酯是发现结直肠晚期腺瘤的潜在生物指标 [28] 。此外,较高水平的甘油三酯和较低的高密度脂蛋白被认为复发性息肉的独立危险因素。早期腺瘤发展成晚期进而发生癌变是结直肠病变重要的演变过程,明确不同阶段的检测标志物对疾病早发现、早诊断、早治疗十分重要。

4.4. 高血压和结直肠息肉的关系

近年来,高血压和结直肠息肉之间的关系少见报道,但多项研究表明与高血压相关的心血管疾病与结直肠腺瘤密切相关。动脉硬化是高血压的一个不良结局,能够增加结直肠腺瘤的发病风险。在一项台湾人群的横断面研究中 [29] ,有学者选取肱踝脉搏波速度(baPWV)作为动脉硬化的标志物,发现动脉硬度增加与结直肠癌前病变发生相关,不仅是腺瘤,还包括高危锯齿状病变。Yutaka Yamaji等 [30] 对踝肱指数和脉搏波速度两项指标分别进行描述,发现所有结直肠腺瘤和晚期肿瘤的患病率随着脉搏波速度的升高而增加,从32.2% (晚期肿瘤,2.6%)增加到62.1% (8.4%) (p < 0.001和p = 0.003)。踝肱指数异常的受试者发生晚期肿瘤的风险更高(33% vs. 4.6%, p < 0.001)。经多因素分析,脉搏波速度与所有腺瘤相关,踝肱指数与晚期肿瘤相关。高血压是否通过动脉硬化驱动结直肠腺瘤发生有待研究验证,有关研究提示结直肠腺瘤和动脉硬化可能具有共同的发病机制,并且同一人群处于高危状态。尽管缺乏直接证据,但一项涉及伊朗人口的研究发现终止高血压膳食(DASH)对于降低结直肠腺瘤和癌发生风险均有良好效果,为结直肠腺瘤预防提供了饮食指导。

5. 治疗干预

诸多研究表明,MetS是结直肠息肉发生、发展的危险因素,采取有效措施防治MetS,及时阻断其驱动作用是降低结直肠息肉患者发病率、致癌率、病死率的先决条件。MetS的疾病特征决定了其防治方法应注重一、二级预防,即病因预防和“三早预防”。由于缺乏MetS治疗指南,目前所有的治疗干预都围绕降低各种危险因素开展,该部分从MetS和结直肠息肉的共同致病因素出发,从饮食、药物和手术三个方面阐述有效防治措施。

5.1. 饮食干预

营养是代谢综合征的关键环境因素。一项针对健康男性的研究表明,营养过剩引起的初始事件可能是氧化应激,但不是炎症或内质网应激,这在一定程度上促进了GLUT4的羰基化和失活,导致胰岛素抵抗 [31] 。氧化应激定义为活性氧(ROS)的产生和降解的不平衡,与MetS密切相关。在饮食诱导和遗传动物模型中的肥胖已显示出NOX (NADPH氧化酶)亚基的过表达,这与MetS中氧化应激的增加呈正相关 [32] 。一些证据表明,ROS的异常生成可以通过前脂肪细胞增殖和分化诱导脂肪生成,有助于肥胖和MetS的发展 [32] 。结肠上皮细胞中的活性氧(ROS)和慢性炎症产生会损害Wingless/It (Wnt)/β-连环蛋白和/或碱基切除修复(BER)通路 [33] [34] ,增强细胞中的分子反应级联反应,并改变组织的代谢状态促进结直肠息肉发生。由此可见,氧化应激可能作为一项枢纽过程,在MetS和结直肠息肉发生和进展中发挥作用。营养过剩所致的氧化剂和抗氧化剂失衡,产生过量ROS堆积在结直肠上皮细胞增加结直肠息肉易感性。为了避免能量过度摄入,建议限制高糖、高脂肪食物,适当选择服用低脂替代品。在一项有关ω-3多不饱和脂肪酸、肠道菌群、微生物代谢物和结直肠腺瘤风险的研究结果中 [35] ,发现ω-3多不饱和脂肪酸摄入量与患结直肠腺瘤的风险降低相关,并且这种关联受到肠道细菌均匀度水平的影响。在正常结肠粘膜组织中测量的三种特定肠道细菌与结直肠腺瘤呈正相关,提示改善ω-3 PUFA摄入量和/或改变肠道微生物环境可能成为预防结直肠癌的潜在风险降低策略。有学者发现膳食单不饱和脂肪酸可以阻碍脂肪NLRP3炎症小体介导的IL-1β分泌,并减弱胰岛素抵抗 [36] 。补充益生菌似乎可以有效改善甚至预防饮食诱导的MetS表型。在高脂饮食喂养的小鼠中,三种益生菌菌株补充剂都减弱了MetS,并将高脂饮食破坏的肠道微生物群的整体结构转向正常饮食的瘦小鼠 [37] 。一项样本量较小的人体研究显示,与未补充益生菌的组相比,补充益生菌4周有助于预防高脂肪和过度喂养诱发的胰岛素抵抗 [38] 。菊粉是支持微生物群介导的肠道组织稳态、预防炎症和MetS的重要成分 [39] 。最近的一项研究还证明,饲喂菊粉可显著限制高脂饮食对微生物群的影响,从而导致微生物种群更加多样化,脂肪酸氧化增加,脂肪酸合成受到抑制 [40] 。适量增加饱和脂肪酸摄入量,添加合适的肠道微生物补充剂是一种防治MetS和结直肠息肉的有效饮食策略。

5.2. 药物和手术

MetS是结直肠息肉发生、发展的高危因素,也增加了糖尿病和心血管疾病的易感性,对于饮食及运动控制不佳的人群,选择合理的药物及手术方式减缓疾病发生、进展和转归至关重要。MetS的治疗目的在于减轻肥胖,控制血压、血糖,改善糖类、脂类代谢等。有研究发现过氧化物酶增殖激活受体γ (PPARγ)可以通过激活增加肠道M1巨噬细胞并减轻突变KRAS小鼠锯齿状腺瘤的形成 [41] 。PPARγ激动剂即噻唑烷二酮类药物(TZDs)为临床常用的胰岛素增敏剂,有望为探究MetS和结直肠息肉发生机制提供线索。然而,另有研究认为PPARγ增加了结直肠肿瘤的易感性,研究结果发现PPARγ T161等位基因携带者发生结直肠肿瘤的风险增加 [42] 。PPARγ对结直肠息肉的影响有待进一步研究确定。在一项涉及阿司匹林对人结肠组织的影响及其与腺瘤风险关联的代谢组学分析研究中 [43] ,发现阿司匹林治疗增加了亚油酸和肌酐水平,并降低了3-磷酸甘油水平。在结直肠癌与正常粘膜组织中,肿瘤中的肌酐较低 [44] [45] ,3-磷酸甘油较高 [46] 。3-磷酸甘油是糖脂代谢重要的中间产物,阿司匹林通过参与代谢调节在MetS和结直肠息肉进展中发挥作用。另外,粪便中的亚油酸与特定的肠道微生物谱有关 [47] [48] ,阿司匹林通过改变肠道微生物组参与MetS及其结直肠息肉驱动过程是又一可能机制。减重代谢手术可以通过减少能量吸收、增加肠道激素分泌和平衡肠道菌群等方式改善患者的胰岛素抵抗、高血压、血脂异常、肥胖等 [49] ,是治疗MetS的有效方法。

6. 小结和展望

MetS是一种合并多种代谢异常的临床综合征,其患病率在全球范围内呈逐年上升趋势,是公共卫生的重要负担。结直肠息肉是结、直肠黏膜突出肠腔的异常组织肿块,与CRC的发生密切相关。有关MetS和结直肠息肉相关性的研究备受关注。然而,目前关于MetS对息肉尤其结直肠息肉发生和发展的影响缺乏系统性报道,直接证据尚不充分。现有研究多围绕MetS不同组分对结直肠息肉的影响展开,认为MetS可能通过胰岛素抵抗、氧化应激、肠道微生物组改变等途径发挥驱动作用。近年来,随着基于CT影像测量技术、UHPLC-ESI-HRMS等方法在临床上的应用,MetS的诊断方法有可能进一步完善,代谢特征进一步阐明。明确MetS与结直肠息肉之间的关系,有助于筛查高危人群,对结直肠息肉的早诊早治及降低结直肠癌的发病率有重要意义。期待未来研究在分子机制和基因组学方面对MetS和结直肠息肉相关性加以验证。

参考文献

[1] 李晓景, 高孝忠, 褚衍六, 等. 结直肠癌合并高风险性腺瘤内镜治疗时机的临床研究[J]. 中华胃肠内镜电子杂志, 2021, 8(1): 13-17.
[2] Nakamura, F., Sato, Y., Okamoto, K., et al. (2022) Colorectal Carcinoma Occurring via the Adenoma-Carcinoma Pathway in Patients with Serrated Polyposis Syndrome. Journal of Gastroenterology, 57, 286-299.
https://doi.org/10.1007/s00535-022-01858-8
[3] Baidoun, F., Elshiwy, K., Elkeraie, Y., et al. (2021) Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Current Drug Targets, 22, 998-1009.
https://doi.org/10.2174/18735592MTEx9NTk2y
[4] 吴艳惠, 杨鑫, 吴现瑞. 代谢综合征与结直肠癌相关性的研究进展[J]. 中国肿瘤外科杂志, 2023, 15(3): 262-265.
[5] Breau, G. and Ellis, U. (2020) Risk Factors Associated with Young-Onset Colorectal Adenomas and Cancer: A Systematic Review and Meta-Analysis of Observational Research. Cancer Control, 27.
https://doi.org/10.1177/1073274820976670
[6] Fliss-Isakov, N., Zelber-Sagi, S., Webb, M., et al. (2017) Distinct Metabolic Profiles Are Associated with Colorectal Adenomas and Serrated Polyps. Obesity, 25, S72-S80.
https://doi.org/10.1002/oby.22001
[7] Hirode, G. and Wong, R, J. (2020) Trends in the Prevalence of Metabolic Syndrome in the United States, 2011-2016. JAMA, 323, 2526-2528.
https://doi.org/10.1001/jama.2020.4501
[8] 钏莉雪, 常江, 赵锦涵. 代谢综合征与结直肠腺瘤性息肉的相关性研究[J]. 胃肠病学, 2019, 24(11): 699-702.
[9] Ozkan, N.T., Tokmak, A., Guzel, A.I., et al. (2015) The Association between Endometrial Polyps and Metabolic Syndrome: A Case-Control Study. Australian and New Zealand Journal of Obstetrics and Gynaecology, 55, 274-278.
https://doi.org/10.1111/ajo.12339
[10] Bueloni-Dias, F.N., Spadoto-Dias, D., Delmanto, L.R., et al. (2016) Metabolic Syndrome as a Predictor of Endometrial Polyps in Postmenopausal Women. Menopause, 23, 759-764.
https://doi.org/10.1097/GME.0000000000000616
[11] Chen, Y., Wang, T., Gao, R., et al. (2023) Effects of Metabolic Syndrome and Its Components on the Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps’ Patients. Brazilian Journal of Otorhinolaryngology, 90, Article ID: 101371.
https://doi.org/10.1016/j.bjorl.2023.101371
[12] Jia, W.P., Xiang, K.S., Chen, L., et al. (2002) Epidemiological Study on Obesity and Its Comorbidities in Urban Chinese Older Than 20 Years of Age in Shanghai, China. Obesity Reviews, 3, 157-165.
https://doi.org/10.1046/j.1467-789X.2002.00071.x
[13] Moon, J.M., Im, J.P., Kim, D., et al. (2021) Increasing Changes in Visceral Adiposity Is Associated with Higher Risk for Colorectal Adenoma: Multilevel Analysis in a Prospective Cohort. Journal of Gastroenterology and Hepatology, 36, 1836-1842.
https://doi.org/10.1111/jgh.15364
[14] Jung, I.S., Shin, C.M., Park, S.J., et al. (2019) Association of Visceral Adiposity and Insulin Resistance with Colorectal Adenoma and Colorectal Cancer. Intestinal Research, 17, 404-412.
https://doi.org/10.5217/ir.2018.00072
[15] 吴文琪, 万远太. 结直肠息肉发生发展相关因素的研究现状[J]. 消化肿瘤杂志(电子版), 2021, 13(2): 148-152.
[16] Kasprzak, A. (2021) Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. International Journal of Molecular Sciences, 22, Article 6434.
https://doi.org/10.3390/ijms22126434
[17] Alagaratnam, S., Loizidou, M., Yang, S.Y., et al. (2020) Increased Expression of IGF-1Ec with Increasing Colonic Polyp Dysplasia and Colorectal Cancer. Journal of Cancer Research and Clinical Oncology, 146, 2861-2870.
https://doi.org/10.1007/s00432-020-03345-0
[18] Qin, M., Wang, H.P., Song, B., et al. (2021) [Relationship between Insulin Resistance, Serum VCAM-1, FGF19, IGF-1 and Colorectal Polyps]. Chinese Journal of Oncology, 43, 553-562.
[19] Brown, J.C. (1982) Gastric Inhibitory Polypeptide. Springer, Berlin.
https://doi.org/10.1007/978-3-642-81771-7_1
[20] Dupre, J., Ross, S, A., Watson, D., et al. (1973) Stimulation of Insulin Secretion by Gastric Inhibitory Polypeptide in Man. The Journal of Clinical Endocrinology & Metabolism, 37, 826-828.
https://doi.org/10.1210/jcem-37-5-826
[21] Sasaki, Y., Takeda, H., Sato, T., et al. (2011) Increased Levels of Serum Glucose-Dependent Insulinotropic Polypeptide as a Novel Risk Factor for Human Colorectal Adenoma. Metabolism, 60, 1253-1258.
https://doi.org/10.1016/j.metabol.2011.01.007
[22] Rogers, M., Gill, D., Ahlqvist, E., et al. (2023) Genetically Proxied Impaired GIPR Signaling and Risk of 6 Cancers. iScience, 26, Article ID: 106848.
https://doi.org/10.1016/j.isci.2023.106848
[23] Chen, F.P., Wang, H.M., Chiang, F.F., et al. (2014) The Metabolic Syndrome Is Associated with an Increased Risk of Colorectal Polyps Independent of Plasma Homocysteine. Annals of Nutrition and Metabolism, 64, 106-112.
https://doi.org/10.1159/000363418
[24] Zhang, R., Yin, J., Huo, C., et al. (2022) The Relationship between Colorectal Polyps and Serum Lipid Levels: A Systematic Review and Meta-Analysis. Journal of Clinical Gastroenterology, 56, 654-667.
https://doi.org/10.1097/MCG.0000000000001678
[25] Tang, C.T., Li, J., Yang, Z., et al. (2022) Comparison of Some Biochemical Markers between Early-Onset and Late-Onset Colorectal Precancerous Lesions: A Single-Center Retrospective Study. Journal of Clinical Laboratory Analysis, 36, e24637.
https://doi.org/10.1002/jcla.24637
[26] Crespo-Sanjuan, J., Calvo-Nieves, M.D., Aguirre-Gervas, B., et al. (2015) Early Detection of High Oxidative Activity in Patients with Adenomatous Intestinal Polyps and Colorectal Adenocarcinoma: Myeloperoxidase and Oxidized Low-Density Lipoprotein in Serum as New Markers of Oxidative Stress in Colorectal Cancer. Laboratory Medicine, 46, 123-135.
https://doi.org/10.1309/LMZJJU6BC86WUDHW
[27] Chen, H., Zhou, H., Liang, Y., et al. (2023) UHPLC-HRMS-Based Serum Untargeted Lipidomics: Phosphatidylcholines and Sphingomyelins Are the Main Disturbed Lipid Markers to Distinguish Colorectal Advanced Adenoma from Cancer. Journal of Pharmaceutical and Biomedical Analysis, 234, Article ID: 115582.
https://doi.org/10.1016/j.jpba.2023.115582
[28] Zhu, Y., Wang, L., Nong, Y., et al. (2021) Serum Untargeted UHPLC-HRMS-Based Lipidomics to Discover the Potential Biomarker of Colorectal Advanced Adenoma. Cancer Management and Research, 13, 8865-8878.
https://doi.org/10.2147/CMAR.S336322
[29] Chen, H.Y., Lee, W.H., Hsu, H.L., et al. (2022) Arterial Stiffness Is Associated with High-Risk Colorectal Adenomas and Serrated Lesions: A Cross-Sectional Study in a Taiwanese Population. Journal of Cardiology, 80, 139-144.
https://doi.org/10.1016/j.jjcc.2022.03.013
[30] Yamaji, Y., Mitsushima, T. and Koike, K. (2014) Pulse-Wave Velocity, the Ankle-Brachial Index, and the Visceral Fat Area Are Highly Associated with Colorectal Adenoma. Digestive and Liver Disease, 46, 943-949.
https://doi.org/10.1016/j.dld.2014.05.012
[31] Boden, G., Homko, C., Barrero, C.A., et al. (2015) Excessive Caloric Intake Acutely Causes Oxidative Stress, GLUT4 Carbonylation, and Insulin Resistance in Healthy Men. Science Translational Medicine, 7, 304re7.
https://doi.org/10.1126/scitranslmed.aac4765
[32] Xu, H., Li, X., Adams, H., et al. (2018) Etiology of Metabolic Syndrome and Dietary Intervention. International Journal of Molecular Sciences, 20, Article 128.
https://doi.org/10.3390/ijms20010128
[33] Boldogh, I., Hajas, G., Aguilera-Aguirre, L., et al. (2012) Activation of Ras Signaling Pathway by 8-Oxoguanine DNA Glycosylase Bound to Its Excision Product, 8-Oxoguanine. Journal of Biological Chemistry, 287, 20769-20773.
https://doi.org/10.1074/jbc.C112.364620
[34] German, P., Szaniszlo, P., Hajas, G., et al. (2013) Activation of Cellular Signaling by 8-Oxoguanine DNA Glycosylase-1-Initiated DNA Base Excision Repair. DNA Repair, 12, 856-863.
https://doi.org/10.1016/j.dnarep.2013.06.006
[35] Wang, T., Brown, N.M., McCoy, A.N., et al. (2022) ω-3 Polyunsaturated Fatty Acids, Gut Microbiota, Microbial Metabolites, and Risk of Colorectal Adenomas. Cancers, 14, Article 4443.
https://doi.org/10.3390/cancers14184443
[36] Finucane, O.M., Lyons, C.L., Murphy, A.M., et al. (2015) Monounsaturated Fatty Acid-Enriched High-Fat Diets Impede Adipose NLRP3 Inflammasome-Mediated IL-1β Secretion and Insulin Resistance Despite Obesity. Diabetes, 64, 2116-2128.
https://doi.org/10.2337/db14-1098
[37] Wang, J., Tang, H., Zhang, C., et al. (2015) Modulation of Gut Microbiota during Probiotic-Mediated Attenuation of Metabolic Syndrome in High Fat Diet-Fed Mice. The ISME Journal, 9, 1-15.
https://doi.org/10.1038/ismej.2014.99
[38] Hulston, C.J., Churnside, A.A. and Venables, M.C. (2015) Probiotic Supplementation Prevents High-Fat, Overfeeding-Induced Insulin Resistance in Human Subjects. British Journal of Nutrition, 113, 596-602.
https://doi.org/10.1017/S0007114514004097
[39] Chassaing, B., Miles-Brown, J., Pellizzon, M., et al. (2015) Lack of Soluble Fiber Drives Diet-Induced Adiposity in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309, G528-G541.
https://doi.org/10.1152/ajpgi.00172.2015
[40] Yan, H., Potu, R., Lu, H., et al. (2013) Dietary Fat Content and Fiber Type Modulate Hind Gut Microbial Community and Metabolic Markers in the Pig. PLOS ONE, 8, e59581.
https://doi.org/10.1371/journal.pone.0059581
[41] Gutting, T., Weber, C.A., Weidner, P., et al. (2018) PPARgamma-Activation Increases Intestinal M1 Macrophages and Mitigates Formation of Serrated Adenomas in Mutant KRAS Mice. Oncoimmunology, 7, e1423168.
https://doi.org/10.1080/2162402X.2017.1423168
[42] Kurnaz-Gomleksiz, O., Torun, B.C., Isbir, T., et al. (2022) The Role of PPAR-Gamma C161T Polymorphism in Colorectal Cancer Susceptibility. In Vivo, 36, 1911-1915.
https://doi.org/10.21873/invivo.12911
[43] Barry, E.L., Fedirko, V., Uppal, K., et al. (2020) Metabolomics Analysis of Aspirin’s Effects in Human Colon Tissue and Associations with Adenoma Risk. Cancer Prevention Research, 13, 863-876.
https://doi.org/10.1158/1940-6207.CAPR-20-0014
[44] Phua, L.C., Chue, X.P., Koh, P.K., et al. (2014) Non-Invasive Fecal Metabonomic Detection of Colorectal Cancer. Cancer Biology & Therapy, 15, 389-397.
https://doi.org/10.4161/cbt.27625
[45] Denkert, C., Budczies, J., Weichert, W., et al. (2008) Metabolite Profiling of Human Colon Carcinoma—Deregulation of TCA Cycle and Amino Acid Turnover. Molecular Cancer, 7, Article No. 72.
https://doi.org/10.1186/1476-4598-7-72
[46] Hirayama, A., Kami, K., Sugimoto, M., et al. (2009) Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Cancer Research, 69, 4918-4925.
https://doi.org/10.1158/0008-5472.CAN-08-4806
[47] Weir, T.L., Manter, D.K., Sheflin, A.M., et al. (2013) Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults. PLOS ONE, 8, e70803.
https://doi.org/10.1371/journal.pone.0070803
[48] Wang, X., Wang, J., Rao, B. and Deng, L. (2022) Gut Flora Profiling and Fecal Metabolite Composition of Colorectal Cancer Patients and Healthy Individuals. Experimental and Therapeutic Medicine, 23, Article No. 250.
https://doi.org/10.3892/etm.2022.11175
[49] Yang, M., Liu, S. and Zhang, C. (2022) The Related Metabolic Diseases and Treatments of Obesity. Healthcare, 10, Article 1616.
https://doi.org/10.3390/healthcare10091616