不同抗VEGF治疗方式对nAMD患者视网膜下纤维化瘢痕及视力预后的影响
Effect of Different Anti-VEGF Therapy on Subretinal Fibrosis Scar and Visual Prognosis in nAMD Patients
摘要: 目的:探讨不同抗血管内皮生长因子(VEGF)治疗方式对新生血管性年龄相关性黄斑变性(nAMD)患者视网膜下纤维化瘢痕及视力预后的影响。方法:回顾性收集2019年6月至2022年12月于我院眼科就诊并确诊为nAMD的94例患者(共94眼)。按治疗方式不同将患者分为2组,连续3月每月1次后按需(Prn)进行玻璃体腔注射抗VEGF药物组(3 Prn组,65眼),未规律进行玻璃体腔注射抗VEGF药物治疗组(未完成3 Prn组,29眼),分析两组患者年龄、性别、手术前后最佳矫正视力(BCVA)、病灶位置等资料,同时收集手术前后光学相干断层扫描(OCT)检查中视网膜纤维化瘢痕宽度及高度数据,分析不同治疗方式下nAMD患者视网膜下纤维化瘢痕及视力是否发生变化。通过对比各组患者基线与终点视网膜下纤维化瘢痕宽度及高度数据和视力变化情况,评价不同治疗方式对患者视网膜下纤维化瘢痕及视力的影响。结果:与治疗前相比,3 Prn组患者终点视网膜下纤维化瘢痕宽度(P = 0.007)、高度(P = 0.042)和未完成3 Prn组患者终点视网膜下纤维化瘢痕宽度(P = 0.013)、高度(P = 0.021)均较基线值升高。未完成3 Prn组患者终点纤维化瘢痕宽度(P < 0.001)、高度(P = 0.037)及宽度变化值(P = 0.042)均大于3 Prn组。治疗后3 Prn组患者BCVA较基线值提高(P < 0.001),且治疗后3 Prn组较未完成3 Prn组BCVA值高(P = 0.037)。结论:3 Prn给药方式与不规律抗VEGF治疗相比能延缓nAMD患者视网膜下纤维化瘢痕的发展,并且患者能获得更好的视力预后。
Abstract: Objective: To investigate the effects of different anti-vascular endothelial growth factor (VEGF) treatments on subretinal fibrosis scar and visual prognosis in patients with neovascular age-related macular degeneration (nAMD). Methods: A total of 94 patients (94 eyes) diagnosed with nAMD were collected retrospectively from June 2019 to December 2022. Patients were divided into 2 groups according to different treatment methods. The group receiving intravitreal anti-VEGF drug injection as needed (3 Prn group, 65 eyes) once a month for 3 consecutive months, and the group receiving intravitreal anti-VEGF drug injection regularly (failed to complete 3 Prn group, 29 eyes). Age, gender, best corrected visual acuity (BCVA) before and after surgery, and lesion location data of the two groups of patients were analyzed. At the same time, the width and height of retinal fibrosis scar examined by optical coherence tomography (OCT) before and after surgery were collected, and the changes in subretinal fibrosis scar and visual acuity of nAMD patients under different treatment methods were analyzed. By comparing the width, height and visual acuity of subretinal fibrotic scar between baseline and end point in each group, the effects of different treatment methods on subretinal fibrotic scar and visual acuity were evaluated. Results: Compared with before treatment, the end points of subretinal fibrotic scar width (P = 0.007) and height (P = 0.042) in the 3 Prn group and the end points of subretinal fibrotic scar width (P = 0.013) and height (P = 0.021) in the non-completed 3 Prn group were higher than baseline values. The end points of fibrotic scar width (P < 0.001), height (P = 0.037) and width change (P = 0.042) in patients who did not complete 3 Prn were greater than those in 3 Prn group. After treatment, BCVA in the 3 Prn group was higher than baseline (P < 0.001), and BCVA in the 3 Prn group was higher than that in the group that did not complete 3 Prn (P = 0.037). Conclusion: Compared with irregular anti-VEGF therapy, 3 Prn administration can delay the development of subretinal fibrosis scar in nAMD patients, and patients can obtain a better visual prognosis.
文章引用:赵晓冉, 巩青云, 周育正, 孙奕斌, 杜兆东. 不同抗VEGF治疗方式对nAMD患者视网膜下纤维化瘢痕及视力预后的影响[J]. 临床医学进展, 2024, 14(3): 2025-2031. https://doi.org/10.12677/acm.2024.143939

1. 引言

新生血管性年龄相关性黄斑变性(nAMD)是影响老年人的主要致盲性眼病,其发病率呈逐年递增的趋势 [1] 。MNV和视网膜下纤维化是nAMD晚期最具有侵袭性的病变特征,纤维化代表了nAMD患者新生血管的伤口愈合反应 [2] [3] 。目前世界上nAMD的一线治疗方式为抗血管内皮生长因子(VEGF)治疗,然而抗VEGF治疗可降低MNV的活性,但并不能完全抑制纤维化的发展,当发生视网膜下纤维化时,视网膜光感受器或RPE和脉络膜毛细血管层结构遭到破坏,这是导致nAMD患者视力丧失最严重的原因之一 [4] [5] 。

纤维化在眼底检查上主要表现为黄斑区白色或淡黄色的组织隆起 [6] (如图1)。光学相干断层扫描(OCT)作为诊断黄斑疾病的金标准,纤维化主要表现为视网膜下间隙出现高反射条带,呈现“洋葱皮”样改变 [7] 。目前nAMD的主要治疗方式为以连续3月每月1次玻璃体腔内注射抗VEGF药物作为启动方案,之后根据病情按需进行眼内注药(3 + Prn)。研究表明,3 + Prn眼内注药方式对于nAMD患者而言可获得更高的远近期收益 [8] [9] ,但是抗VEGF治疗在针对视网膜下纤维化瘢痕方面的疗效却鲜少有报道。本研究通过回顾性分析不同抗VEGF治疗方式对nAMD患者视网膜下纤维化瘢痕及视力预后的疗效及差异,旨在为治疗nAMD患者纤维化瘢痕及视力预后评估提供参考和理论指导。

Figure 1. Measurement of fibrotic scar width (blue line) and height (yellow line)

图1. 纤维化瘢痕宽度(蓝线)和高度测量(黄线)

2. 材料与方法

2.1. 资料来源

本研究回顾性收集了2019年6月至2022年12月于我院眼科就诊并确诊为nAMD的患者的临床资料。nAMD的诊断基于眼底镜检查、OCT等眼科检查。患者必须满足以下入选标准:① 基于眼底检查、OCT、眼底荧光血管造影(FFA)、吲哚菁绿血管造影(ICGA)等检查确诊为nAMD的患者;② 自初始治疗后至少随访1年;③ 治疗前及治疗后随访过程中未进行其他眼部治疗(如眼底手术等);④ 临床资料完整。排除标准:① 患有严重影响视力的疾病,如白内障等;② 患眼合并其他玻璃体视网膜疾病;③ 患有严重的全身基础疾病。研究纳入患者共94例(94眼),按照不同治疗方式将患眼分为3 + Prn组(连续3月每月1次后按需(Prn)进行玻璃体腔注射抗VEGF药物组,65眼)和未完成3 + Prn组(未规律进行玻璃体腔注射抗VEGF药物治疗组,29眼)。

收集患者的一般资料,例如年龄、性别、治疗前后最佳矫正视力(best corrected vision acuity, BCVA)以及治疗前后患者OCT检查资料等。将BCVA结果转换成(最小分辨角对数) log-MAR并进行相应统计学分析,测量OCT检查结果中视网膜下纤维化瘢痕宽度和高度的变化(纤维化瘢痕测量如图1所示),所有数值均采用3次测量的平均值。评价不同治疗方式对纤维化瘢痕宽度及高度有无影响;分析基线和终点视力变化,评价纤维化瘢痕存在时对治疗前后患者视力的影响。

2.2. 统计学分析

采用SPSS27.0软件进行统计学数据分析。计量资料以 x ¯ ± s 表示。若计量资料符合正态分布,组内比较采用配对样本t检验,组间比较采用独立样本t检验;若不符合正态分布,使用Mann-Whitney U检验进行差异性分析;计量资料以百分比表示,采用χ2检验进行差异性分析;检验标准为P < 0.05。

3. 结果

3.1. 患者基本资料

共收集符合纳入标准的nAMD患者94例(94眼),男48例(48眼),女46例(46眼);年龄55~87岁,平均年龄(65.78 ± 16.08)岁;基线BCVA平均0.30 ± 0.27;对比两组患者的基本资料,性别、年龄、基线BCVA、病灶是否位于黄斑中心凹下、是否有基线纤维化,差异均无统计学意义(P > 0.05),见表1

Table 1. Comparison of preoperative general data between the two groups

表1. 两组患者术前一般资料比较

3.2. 治疗前后两组患者视网膜下纤维化瘢痕宽度和高度的比较

经抗VEGF治疗后,两组患者纤维化瘢痕宽度及高度均大于基线值,且差异有统计学意义(P = 0.007, P = 0.042);未完成3 + Prn组终点纤维化瘢痕宽度和高度均明显大于3 + Prn组(P < 0.001, P = 0.037),通过将终点和基线纤维化瘢痕宽度和高度变化值进行统计,发现未完成3 + Prn组患者纤维化瘢痕宽度变化值明显大于3 + Prn组(P = 0.007),见表2

Table 2. The width and height of fibrotic scar were compared between the two groups before and after treatment

表2. 治疗前后两组患者纤维化瘢痕宽度和高度对比

3.3. 不同治疗方式对存在纤维化瘢痕的nAMD患者视力的影响

对比存在基线存在纤维化瘢痕患者基线和终点BCVA,我们发现:未完成3 + Prn组患者经治疗后视力无明显好转(P = 0.645),而3 + Prn组终点BCVA较基线BCVA有所提高(P < 0.001);两组患者基线BCVA无统计学意义(P = 0.745),而经治疗后,3 + Prn组患者终点BCVA明显优于未完成3 + Prn组(P = 0.037)。从而验证了当存在视网膜下纤维化瘢痕时,3 + Prn方式在疗nAMD患者对视力预后有积极影响,见表3

Table 3. Visual acuity changes before and after treatment in both groups

表3. 两组患者治疗前后视力变化

4. 讨论

黄斑区纤维化瘢痕最初由Junius和Kuhnt于1926年提出,是nAMD患者最常见的终点病理变化 [10] 。当血管组织发生损伤并产生炎症反应时,细胞外基质不断沉积,从而形成纤维化状态,并进一步产生纤维化瘢痕,因此,纤维化瘢痕又称为纤维血管病变 [11] [12] 。因抗VEGF治疗的抗血管生成和抗渗出作用,其被认为是nAMD的标准治疗方案 [13] 。nAMD患者一旦确诊后,立刻进行抗VEGF治疗可能会阻止纤维化的发生,确诊与第一次进行抗VEGF治疗时间间隔越短,纤维化产生几率更小。但VEGF为主要的血管生成因子,与结缔组织生长因子(CTGF)共同参与纤维组织的生成过程 [14] 。在抗VEGF治疗后,CTGF参与产生的前纤维因子失去VEGF的中和作用,从而产生了从血管生成向纤维化的转变 [15] 。部分研究表明,nAMD患者在接受抗VEGF治疗后视网膜下纤维化出现了进一步发展 [16] [17] ,在经过2年抗VEGF治疗之后出现视网膜下纤维化瘢痕的发生率甚至可以达到45% [18] 。并且每月一次的抗VEGF治疗方式较每两周一次更不易形成纤维化 [19] 。因此,本研究分析了不同时间间隔的抗VEGF治疗方式下nAMD患者治疗前后OCT的参数差异,对比纤维化瘢痕变化及视力预后情况,探讨抗VEGF药物对存在纤维化瘢痕nAMD患者的疗效,以期为nAMD患者提供更有益的治疗方式提供依据。

本次研究中,纳入了符合标准的患者94例,分为3 + Prn组和未完成3 + Prn组,对比两组患者治疗前后纤维化瘢痕宽度、高度和视力变化情况。研究结果显示,两组nAMD患者治疗后纤维化瘢痕宽度和高度均大于治疗前,这可能跟抗VEGF药物的应用使得患者体内VEGF与CTGF协调失衡从而导致纤维化进展相关 [13] 。但通过对比两组治疗前后纤维化瘢痕宽度和高度的差值,发现未完成3 + Prn组患者治疗后数值增大更加显著。这种差异是因为未及时进行抗VEGF治疗导致的病情反复活动性变化有关,在新生血管形成过程中,不断渗漏的浒关会对周围组织形成慢性损伤,使得周围环境中的炎性介质增多,大量肌成纤维细胞和免疫细胞等募集、活化、增殖形成了纤维血管复合体,最终形成纤维化瘢痕 [20] 。而存在纤维化瘢痕情况下,完成3 + Prn组患者视力预后较未完成3 + Prn组有所提升,这可能与治疗过程中nAMD患者反复发生新生血管渗漏、出血和液体储留从而导致的视力下降甚至视物变形等症状有关 [21] [22] 。

nAMD患者晚期病变中的视网膜下纤维化会极大地影响患者的视力预后 [23] 。1型CNV较2型CNV更不容易发展成视网膜下纤维化 [18] 。而目前针对nAMD的抗VEGF治疗方案在治疗纤维化方面疗效欠佳 [18] 。而不同周期的抗VEGF治疗方案导致纤维化的形成比率也有所不同,部分研究表明,每2周1次的治疗相较于每月1次或注射1次后按需治疗的方案,其BCVA的改善程度未见提高,且视网膜下纤维化的形成比率也有所增加 [13] 。在此基础上,本研究首次探讨了存在视网膜下纤维化时,不同治疗方案的实施对患者纤维化的程度及BCVA的改善是否有不同,旨在为nAMD患者寻找预后更好的治疗方式。

综上所述,抗VEGF药物对纤维化的发展存在一定的影响,及时并规律完成3 + Prn疗程能有效减少纤维化的发生,并且规律每月1次连续3月后按需进行抗VEGF治疗能在一定程度上延缓活动期nAMD患者纤维化瘢痕的进展,有效提高患者视力预后。

本实验具有一定的局限性,由于部分患者依从性较差,导致回顾性分析存在无法进行长时间、大样本量、多中心性的研究,研究结果具有一定程度的偏倚,因此需要进行更长时间随访及更大样本量的数据收集来进一步深入完善及验证本实验结论。

基金项目

山东省自然科学基金,编号ZR2017MH055,PTP1B调节RPE细胞信号转导在增殖性玻璃体视网膜病变中的作用研究;国家自然科学基金,编号81900824,Candidalysin调控TREM-1/DAP12触发真菌性角膜炎免疫炎症反应的分子机理研究。

伦理批准和知情同意

本研究涉及的所有试验均已通过青岛大学附属医院医学伦理委员会的审核批准(QYFY WZLL 28378)。所有试验过程均遵照《赫尔辛基宣言》的条例进行。受试对象或其亲属已签署知情同意书。

NOTES

*通讯作者。

参考文献

[1] Romano, F., Cozzi, E., Airaldi, M., et al. (2023) Ten-Year Incidence of Fibrosis and Risk Factors for Its Development in Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 252, 170-181.
https://doi.org/10.1016/j.ajo.2023.03.033
[2] Spaide, R.F., Jaffe, G.J., Sarraf, D., et al. (2020) Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data. Ophthalmology, 127, 616-636.
https://doi.org/10.1016/j.ophtha.2019.11.004
[3] Keane, P.A., Patel, P.J., Liakopoulos, S., et al. (2012) Evaluation of Age-Related Macular Degenerationith Optical Coherence Tomography. Survey of Ophthalmology, 57, 389-414.
https://doi.org/10.1016/j.survophthal.2012.01.006
[4] Cohen, S.Y., Oubraham, H., Uzzan, J., et al. (2012) Causes of Unsuccessful Ranibizumab Treatment in Exudative Age-Related Macular Degeneration in Clinical Settings. Retina, 32, 1480-1485.
https://doi.org/10.1097/IAE.0b013e318240a516
[5] Bhutto, I. and Lutty, G. (2012) Understanding Age-related Macular Degeneration (AMD): Relationships between the Photoreceptor/Retinal Pigment Epithelium/Bruch’s Membrane/Choriocapillaris Complex. Molecular Aspects of Medicine, 33, 295-317.
https://doi.org/10.1016/j.mam.2012.04.005
[6] Toth, L.A., Stevenson, M. and Chakravarthy, U. (2015) Anti-Vascular Endothelial Growth Factor Therapy for Neovascular Age-Related Macular Degeneration: Outcomes in Eyes with Poor Initial Vision. Retina, 35, 1957-1963.
https://doi.org/10.1097/IAE.0000000000000583
[7] Daniel, E., Toth, C.A., Grunwald, J.E., et al. (2014) Risk of Scar in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 121, 656-666.
https://doi.org/10.1016/j.ophtha.2013.10.019
[8] Koh, A., Lanzetta, P., Lee, W.K., et al. (2017) Recommended Guidelines for Use of Intravitreal Aflibercept with a Treat-and-Extend Regimen for the Management of Neovascular Age-Related Macular Degeneration in the Asia-Pacific Region: Report from a Consensus Panel. The Asia-Pacific Journal of Ophthalmology, 6, 296.
[9] Amoaku, W., Balaskas, K., Cudrnak, T., et al. (2018) Initiation and Maintenance of a Treat-and-Extend Regimen for Ranibizumab Therapy in Wet Age-Related Macular Degeneration: Recommendations from the UK Retinal Outcomes Group. Clinical Ophthalmology, 12, 1731-1740.
https://doi.org/10.2147/OPTH.S174560
[10] Ryu, C.L., Al-humaid, S., Rampakakis, E., et al. (2016) Correlation of Visual Acuity with Fibrotic Scar Location in Neovascular Age-Related Degeneration Eyes. Retina, 36, 1324-1330.
https://doi.org/10.1097/IAE.0000000000000877
[11] Xiao, H., Zhao, X., Li, S., et al. (2021) Risk Factors for Subretinal Fibrosis after Anti-VEGF Treatment of Myopic Choroidal Neovascularization. British Journal of Ophthalmology, 105, 103-108.
https://doi.org/10.1136/bjophthalmol-2019-315763
[12] Cabello-Verrugio, C., Santander, C., Cofré, C., et al. (2012) The Internal Region Leucine-Rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-Related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles. The Journal of Biological Chemistry, 287, 6773-6787.
https://doi.org/10.1074/jbc.M111.312488
[13] Barikian, A., Mahfoud, Z., Abdulaal, M., et al. (2015) Induction with Intravitreal Bevacizumab Every Two Weeks in the Management of Neovascular Age-Related Macular Degeneration. American Journal of Ophthalmology, 159, 131-137.
https://doi.org/10.1016/j.ajo.2014.10.005
[14] Tang, G., Li, S., Zhang, C., et al. (2021) Clinical Efficacies, Underlying Mechanisms and Molecular Targets of Chinese Medicines for Diabetic Nephropathy Treatment and Management. Acta Pharmaceutica Sinica B, 11, 2749-2767.
https://doi.org/10.1016/j.apsb.2020.12.020
[15] Zhang, H., Yang, Y., Takeda, A., et al. (2013) A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis. PLOS ONE, 8, e68173.
https://doi.org/10.1371/journal.pone.0068173
[16] Cui, W., Zhang, H. and Liu, Z.-L. (2014) Interleukin-6 Receptor Blockade Suppresses Subretinal Fibrosis in a Mouse Model. International Journal of Ophthalmology, 7, 194-197.
[17] Hillebrandt, S., Wasmuth, H.E., Weiskirchen, R., et al. (2005) Complement Factor 5 Is a Quantitative Trait Gene That Modifies Liver Fibrogenesis in Mice and Humans. Nature Genetics, 37, 835-843.
https://doi.org/10.1038/ng1599
[18] Bloch, S.B. (2013) Implementation Studies of Ranibizumab for Neovascular Age-Related Macular Degeneration. Acta Ophthalmologica, 91, 1-22.
https://doi.org/10.1111/aos.12272
[19] Roberts, P.K., Zotter, S., Montuoro, A., et al. (2019) Identification and Quantification of the Angiofibrotic Switch in Neovascular AMD. Investigative Opthalmology & Visual Science, 60, 304-311.
https://doi.org/10.1167/iovs.18-25189
[20] Cheng, C.-K., Chen, S.-J., Chen, J.-T., et al. (2022) Optimal Approaches and Criteria to Treat-and-Extend Regimen Implementation for Neovascular Age-Related Macular Degeneration: Experts Consensus in Taiwan. BMC Ophthalmology, 22, Article No. 25.
https://doi.org/10.1186/s12886-021-02231-8
[21] Fleckenstein, M., Keenan, T.D.L., Guymer, R.H., et al. (2021) Age-Related Macular Degeneration. Nature Reviews Disease Primers, 7, Article No. 31.
https://doi.org/10.1038/s41572-021-00265-2
[22] Luo, L., Zhang, X., Hirano, Y., et al. (2013). Targeted Intraceptor Nanoparticle Therapy Reduces Angiogenesis and Fibrosis in Primate and Murine Macular Degeneration. ACS Nano, 7, 3264-3275.
https://doi.org/10.1021/nn305958y
[23] Daniel, E., Pan, W., Ying, G., et al. (2018). Development and Course of Scars in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 125, 1037-1046.
https://doi.org/10.1016/j.ophtha.2018.01.004