阿尔茨海默病化学合成药及生物技术药物药的研究进展
Research Progress of Chemical Synthesis Drugs and Biotechnology Drugs for Alzheimer’s Disease
摘要: 阿尔茨海默病(Alzheimer’s Disease, AD)是最常见的与年龄相关的不可逆和进行性神经退行性疾病之一,其特征是失智、记忆力减退、语言技能下降以及随着年龄的增长而出现认知障碍。目前的治疗药物主要以改善临床症状为主,本文通过查阅相关文献,将主要与AD相关且受美国食品药物管理局(Food and Drug Administration, FDA)所批准的治疗药物做一综述,本文系统地总结和分析当前治疗药物在AD治疗中的作用以及研究进展,以此为AD的治疗和研究提供参考和借鉴。
Abstract: Alzheimer’s disease (AD) is one of the most common age-related irreversible and progressive neurodegenerative diseases, characterized by dementia, memory loss, decline in language skills, and cognitive impairment with age. Current therapeutic drugs are mainly used to improve clinical symptoms. This paper reviews the therapeutic drugs that are mainly related to AD and approved by the Food and Drug Administration (FDA) of the United States by referring to relevant literature. This article systematically summarizes and analyzes the role of current therapeutic drugs in the treatment of AD and the research progress in order to provide reference for the treatment and research of AD.
文章引用:陈学权, 郑文彬, 车土玲, 聂奕玮, 周文庆, 苏裕盛. 阿尔茨海默病化学合成药及生物技术药物药的研究进展[J]. 自然科学, 2024, 12(2): 440-448. https://doi.org/10.12677/ojns.2024.122051

1. 引言

阿尔茨海默病(Alzheimer’s Disease, AD)是一种慢性神经退行性疾病,以进行性认知障碍和记忆丧失为特征,并伴有不同程度的心理行为症状,如失眠、抑郁、易怒等 ‎[1] 。目前全球有超5500万人患有失智症,世界上每3秒钟就会有一个新的失智症病例出现,每年有近1000万新病例 ‎[2] 。AD是失智症最常见的形式,可能占病例数的60~70% ‎[3] 。AD已成为一个不容忽视的公共卫生问题,不仅给家庭而且给世界经济带来巨大的精神和经济压力 ‎[4] 。

针对AD的治疗主要包括药物治疗和非药物治疗两种。由于AD的发病机制尚不完全清楚,目前尚无根治性的治疗方法。其中,药物治疗是目前AD治疗的主要手段 ‎[5] 。化学合成药物及生物技术药物治疗可以通过改善病理生理过程、延缓发病、减缓进展、改善认知和减少AD的行为障碍,提高患者生活质量。药物治疗可以在疾病发展的不同阶段介入,从而实现AD的预防和治疗 ‎[6] ‎[7] 。一项全国性的回顾性队列研究,研究共纳入了36,513名参与者。这项研究发现强调了在AD的药物治疗作用不仅可以减缓认知能力下降的速度,还可以直接延长寿命 ‎[8] 。在全世界范围内,在轻中症AD患者中,13%~89%使用胆碱酯酶抑制剂,1%~21% 使用美金刚,0.4%~39%合用二者 ‎[9] 。其中,靶向Aβ的药物、乙酰胆碱抑制剂、N-甲基天冬氨酸(N-Methyl-D-Aspartic Acid, NMDA)受体拮抗剂,是当前药物治疗AD的重点领域,且在这些研究领域中均已取得美国食品药物管理局(Food and Drug Administration, FDA)所批准用于AD的药物。

2. AD的病理生理机制

2.1. β-淀粉样蛋白的生成和沉积

最近的一项荟萃分析表明,在认知正常的老年人中,高水平的Aβ与轻微的认知障碍和下降有关,这表明这些受试者可能存在失智前驱症状 ‎[10] 。另有大量证据证实,Aβ寡聚物是最具神经毒性的聚集物,通过导致功能性神经元死亡、认知损伤和失智,在AD的发生和发展中发挥关键作用 ‎[11] 。Aβ可聚合成不溶性淀粉样纤维,聚集成斑块,这种聚合导致激酶活化,从而导致微管相关tau蛋白的过度磷酸化,并聚合成不溶性神经原纤维缠结(Neurofibrillary Tangles, NFT),斑块和缠结聚集后,斑块周围出现小胶质细胞募集,这将促进小胶质细胞活化和局部炎症反应,并导致神经毒性 ‎[12] 。由于Aβ在大脑皮层和海马体内不断积累,进而导致神经系统遭到损伤,这将进一步加剧AD的进程。

2.2. Tau蛋白异常过度磷酸化的生成和堆积

Tau蛋白是一种关键的微管相关蛋白,在健康神经元中通过可逆的酶介导的磷酸化和去磷酸化过程结合和稳定微管 ‎[13] 。tau蛋白的病理性积累与AD患者的认知能力下降密切相关 ‎[14] 。一旦tau被高度磷酸化,它就会发生构象变化,不再与微管结合,游离tau形成聚集体,称为tau低聚物 ‎[15] 。此外,Aβ也会对tau磷酸化的驱动作用,还干扰tau齐聚和聚集 ‎[16] 。并且由于神经元损伤而激活的小胶质细胞也可能与神经变性的诱导有关,也会导致tau过度磷酸化和聚集 ‎[17] 。广泛的研究表明,聚集的、过度磷酸化的tau可能导致突触通讯障碍以及神经元死亡 ‎[18] 。

2.3. 胆碱能假说

胆碱能假说提出胆碱乙酰转移酶的活性和大脑皮层等区域的乙酰胆碱(Acetylcholine, Ach)水平降低 ‎[19] 。胆碱能神经元在人脑中广泛分布,并在认知中发挥作用。与记忆和学习相关的胆碱能信号转导依赖于Ach ‎[20] 。Ach是一种重要的兴奋性神经递质,参与学习、记忆和其它高级行为,中枢胆碱能神经系统通过调节Ach的合成和释放来影响Ach水平 ‎[21] 。在胆碱能神经元中,胆碱乙酰转移酶从其前体胆碱合成Ach,乙酰胆碱囊泡转运蛋白(VAChT)将Ach包裹到突触囊泡中,乙酰胆碱酯酶(Acetylcholin Esterase, AChE)将Ach分解为胆碱。胆碱转运体(ChT)将胆碱重新吸收回胆碱能神经元。在胆碱能神经元的整个生命周期中,所有这些蛋白的共同表达确保了乙酰胆碱能生物合成的继续,从而确保了胆碱能神经元与其突触后靶点的沟通 ‎[22] ‎[23] 。AChE是一种丝氨酸蛋白酶,在中枢神经系统(Central Nervous System, CNS)和神经肌肉接头的胆碱能传递中发挥关键作用。一些研究表明,AD患者降低了胆碱乙酰转移酶的比率,尤其是在皮层和海马区域,然而这些区域正是该病发生的神经变性部位 ‎[24] 。因此,新皮质、海马体和相关终末场网络中缺乏Ach可能是AD失智患者严重认知障碍的直接原因 ‎[25] 。

2.4. NMDA受体

离子型谷氨酸受体(ionotropic Glutamate Receptor, iGluRs)的一个亚群被特异性激动剂N-甲基-d-天冬氨酸(N-Methyl-D-Aspartic Acid, NMDA)选择性门控,因此被命名为NMDA受体 ‎[26] 。NMDA受体在记忆形成和大脑发育中起着重要作用 ‎[27] 。NMDA受体假说中AD条件下NMDA受体的过度激活:增强钙离子的内流,导致自由基的产生,进一步导致神经元死亡;NMDA谷氨酸受体过度激活导致的钙、钠和氯水平升高与突触后膜过度去极化、神经退行性过程的开始和细胞死亡有关 ‎[28] 。另外,谷氨酸的异常积累导致NMDA受体过度激活,由此产生的慢性兴奋性毒性可能导致神经元丧失和认知障碍 ‎[29] 。

3. 化学合成药的研究进展

3.1. 靶向Aβ的药物

Aβ在AD的发病机制中起着至关重要的作用,因此,研究靶向Aβ的药物已成为AD治疗研究的热点。目前,靶向Aβ的药物主要有两类:抑制Aβ生成的药物和清除Aβ的药物。

3.1.1. 抑制Aβ生成的药物

APP被β-分泌酶和γ-分泌酶连续裂解产生细胞毒性Aβ1-40和Aβ1-42,易沉积。APP也可分别被β-分泌酶和α-分泌酶或α-分泌酶和γ-分泌酶切割后产生无毒的Aβ1-14/15/16或P3 (Aβ17-40/42)。这些代谢物不易沉积,且能被有效清除。因此,上调α-分泌酶、抑制β-分泌酶和γ-分泌酶、以及减少APP生成,是针对抑制Aβ生成及沉积的AD药物研发的主要策略 ‎[30] 。β-分泌酶1抑制剂AZD3293、γ分泌酶抑制剂PF-3084014等此类减少Aβ产生的药物,它作为一种很有前景的AD治疗方法已进入临床开发阶段 ‎[31] 。黄酮类化合物可通过增加α-分泌酶活性或抑制β-分泌酶活性来减少Aβ斑块。它们可以干扰纤颤,通过金属螯合活性抑制Aβ聚集,增加脑血管血流量,降低Aβ水平,或抑制与神经损伤有关的因素。类黄酮在治疗AD方面具有很强的治疗活性,被认为是未来的候选药物 ‎[32] 。

3.1.2. 清除Aβ的药物

Aducanumab (商品名:Aduhelm)是一种高亲和力、靶向Aβ的单克隆抗体 ‎[33] 。2021年6月7日,FDA宣布aducanumab被批准用于治疗AD患者。aducanumab是自2003年以来首个获批用于AD的新型疗法。值得注意的是,这是首个具有治疗这种破坏性疾病的疾病调节机制的药物,即从大脑中去除Aβ斑块 ‎[34] 。aducanumab是一种选择性针对聚集态Aβ的重组人源化IgG1单克隆抗体,通过血脑屏障进入脑内后,该药与脑实质内的Aβ结合,清除脑内可溶性及不可溶性Aβ斑块,且表现出时间及剂量依赖性 ‎[35] 。使用aducanumab治疗早期AD患者的一项Ib期试验和两项相同设计的III期试验表明,脑内Aβ斑块呈剂量依赖性减少 ‎[36] 。此外,一个关于aducanumab作用机制的定量系统药理学模型分析表示,每4周将阿杜卡努单抗剂量从1 mg/kg增加到10 mg/kg,不仅使斑块减少更快,而且在稳定状态下使斑块减少更大。该模型可用于理解aducanumab和其他Aβ疗法的结果,并帮助找到正确的剂量和设计未来的AD疗法 ‎[37] 。Herring等人预测了通过Markov建模方法评估aducanumab治疗早期AD患者的长期临床益处。结果显示,与采用标准护理(Standard of Care, SOC)治疗的患者相比,aducanumab治疗使患者质量调整生命年(Quality Adjusted Life Years, QALYs)增加0.65,护理人员QALYs损失减少0.09 ‎[38] 。目前aducanumab仅被批准用于MCI和早期AD,但不适用于中度至重度AD,并且FDA建议对接受aducanumab治疗的患者需要行磁共振成像动态监测 ‎[39] 。aducanumab上市时间较短,仍需对其进行更深入长期的研究,以评估其有效性和安全性 ‎[33] 。

3.2. 靶向Tau的药物

Tau靶向药物根据病理靶点分为4个亚组:tau磷酸化抑制剂、微管稳定剂、增强tau清除和tau聚集抑制剂 ‎[40] 。tau蛋白的过度磷酸化导致其构象改变和异常聚集,是神经丝轻链形成、记忆损伤和神经元损伤的关键 ‎[41] 。Tideglusib是一种基于噻二唑烷酮的药物,可以竞争性抑制糖原合酶激酶3-β (GSK3-β)的酶活性 ‎[42] 。在同时表达tau和Aβ病理的转基因小鼠模型中,Tideglusib降低了tau蛋白磷酸化和Aβ水平,改善了神经元死亡,并挽救了认知记忆缺陷 ‎[43] 。在tau蛋白方面,丙戊酸已被证明是GSK3-β和细胞周期蛋白依赖性激酶5 (cyclin dependent kinase 5, cdk5)的抑制剂,从而降低tau蛋白磷酸化 ‎[44] 。由于Tau蛋白参与维持神经元中微管的稳定性,因此Tau蛋白的降解会影响微管的稳定性 ‎[45] 。Epothilone D (BM2-241027)是一种脑渗透微管稳定剂,能够聚合微管蛋白并抑制其解聚 ‎[46] 。研究还表明,BM2-241027可减少PS19衰老tau转基因小鼠的轴突功能障碍、神经毒性、认知缺陷和AD样病理 ‎[47] 。维持微管蛋白聚谷氨酰化水平已被证明对神经元存活至关重要。增强tau清除侧重于诱导针对tau病理的自身免疫反应,并用于轻度至中度AD。AADvac-1是第一个用于人类的抗tau疫苗。该疫苗获得了良好且安全的结果,包括在大多数患者中产生高亲和力的抗tau抗体,减少血液神经丝和脑脊液中的p-tau,并减缓年轻患者的认知能力下降 ‎[48] 。亚甲基蓝被认为是tau蛋白聚集的抑制剂,但在3期临床试验中,与对照组相比,未观察到认知功能障碍的减少 ‎[49] 。

3.3. 乙酰胆碱抑制剂

有研究证实,AChE抑制剂诱导的胆碱能神经元和突触标记物的变化表明,它们可能导致广泛的突触再生,特别是烟碱性胆碱能受体神经元的突触重建,以及改善CNS胆碱能信号 ‎[50] 。这也将可进一步改善AD的症状。另外,由于AD的主要原因是神经递质的消耗,因此AChE抑制剂旨在增加Ach的量,这是通过应用胆碱能抑制剂限制大脑中Ach浓度的降低 ‎[51] 。目前,AChE抑制剂也通常被认为是治疗AD的一线药物,主要包括利伐他明、加兰他敏和多奈哌齐,这些药物通常用于轻度AD患者 ‎[52] 。AChE抑制剂多奈哌齐和利瓦司他明通过抑制Ach作用于突触后神经元后的分解,增加突触间隙中乙酰胆碱的数量和神经递质的作用时间 ‎[53] 。在一项评估肉苁蓉对中度AD患者疗效的小样本研究中,使用多奈哌齐治疗48周后,除了改善认知能力外,还减缓了海马萎缩,降低了脑脊液中总tau、肿瘤坏死因子-α和IL-1β的mRNA和蛋白表达 ‎[54] 。加兰他敏作为一种常用的临床胆碱能药物,用于改善老年AD患者的认知功能,被发现能有效抑制TNF-α和IL-1β等促炎细胞因子的分泌,表明这种药物在抗神经炎治疗在AD中不可或缺的作用 ‎[55] 。有网络荟萃分析综合比较了FDA批准用于AD的现有认知增强剂的疗效和耐受性,并对其进行了排名。对于轻度至中度患者,AChE抑制剂的认知效果优于美金刚,其中加兰他敏和多奈哌齐可能是与认知改善最密切相关的干预措施 ‎[56] 。

3.4. NMDA受体拮抗剂

NMDA受体的高活性由美金刚胺的抗AD药物控制,该药物与NMDA受体的开放状态结合,起到非竞争性拮抗剂的作用 ‎[57] 。为了治疗中度至重度的AD,FDA于2003年批准了美金刚,它作为一种NMDA受体拮抗剂,可减少因谷氨酸能过度传递而引起的AD兴奋性毒性 ‎[58] 。美金刚优先结合开放的NMDA受体操作的钙通道,阻断NMDA介导的离子通量,并改善病理性谷氨酸水平升高导致神经元功能障碍的危险效应 ‎[59] 。美金刚作为一种开放通道阻滞剂,被认为可以在AD发病机制中防止NMDAR过度激活和谷氨酸介导的神经毒性 ‎[60] 。与其它NMDAR通道阻滞剂相比,它具有更好的治疗耐受性和良好的安全性,因为它能够优先阻断突触外NMDAR,而突触外的NMDAR与细胞死亡途径的激活有关 ‎[61] 。另外,美金刚可以通过防止神经元丢失来保护神经,也可以通过帮助受损神经元恢复功能来改善症状 ‎[62] 。NMDA受体拮抗剂美金刚对中度至重度AD患者的认知效果优于安慰剂 ‎[63] 。另外,目前美金刚的联用方法与效果得到很好的反馈,一项美金刚联合脑电磁治疗AD的研究中,联合组:显效11例、好转26例、无效1例,治疗总有效率为97.37%;常规组:显效6例、好转24例、无效8例,治疗总有效率为78.95%。联合组的治疗总有效率高于常规组 ‎[64] 。

4. 化学合成药及生物技术药优缺点分析

4.1. 可以精确靶向药理作用

化学合成药物的最大优势之一是能够精确靶向药理作用。通过精确地设计和合成药物分子结构,可以实现选择性作用于特定的分子或细胞。这种精确性意味着药物可以更好地治疗疾病而不会对健康细胞造成不必要的伤害。例如,对于AD治疗来说,可以设计靶向Aβ或tau蛋白的药物,并在分子结构上精细调整以增加其选择性和效力 ‎[65] ‎[66] 。这种定向药理学的方法可以使药物更有效地作用于特定受体或酶,同时减少对非目标受体的影响。这也可以减少副作用,提高药物的安全性。

4.2. 药物代谢和排泄的挑战

化学合成药物在治疗神经系统疾病时面临的一个重要问题是药物代谢和排泄的挑战。化学合成药物的代谢和排泄是治疗效果的关键。大多数药物是通过肝脏代谢和肾脏排泄。但是AD患者的肝脏和肾脏功能可能已经减弱,这可能导致药物在体内的积累和毒性反应 ‎[67] 。此外,AD的患者通常需要多种药物治疗,这可能会增加代谢和排泄的挑战,导致药物相互作用的风险增加。神经系统疾病通常需要长期治疗,而化学合成药物往往需要经过复杂的代谢和排泄过程才能发挥作用。这种复杂性不仅使得治疗过程更为困难,同时也增加了药物的副作用和毒性风险。

5. 结论与展望

5.1. 当前研究进展的局限性

尽管目前针对AD的药物治疗研究取得了一定的进展,但仍然存在许多局限性。首先,许多已知的药物并不能完全治愈AD,它们仅能缓解症状或减缓疾病的进展。其次,许多药物都存在着副作用或安全性问题。此外,药物通常需要长时间的开发和临床试验,以保证其安全性和有效性,这也会增加研究成本和时间。

5.2. 未来发展方向的展望

针对AD的药物研究还需要进一步探索,开发更多能够精确靶向作用的药物,并提高药物的药效和安全性。探索新的药物设计和合成方法、发展个性化药物治疗、加强药物临床试验。此外,也可以探索针对AD的综合治疗方案,包括药物治疗、康复训练、心理支持等,综合治疗可以提高治疗效果,减少病人的痛苦。此外,还需要深入研究AD的发病机制和病理生理过程,以寻找新的治疗靶点和药物。总之,药物治疗在疾病治疗方面具有广阔的前景和发展空间,需要在多个方面进行研究和发展,以提高药物的疗效和安全性,更好地服务于人类健康。

基金项目

2022年宁德师范学院引进人才项目基金(2022Y24)支持。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Magierski, R. and Sobow, T. (2016) Serotonergic Drugs for the Treatment of Neuropsychiatric Symptoms in Dementia. Expert Review of Neurotherapeutics, 16, 375-387.
https://doi.org/10.1586/14737175.2016.1155453
[2] International, A.S.D. (2021) World Alzheimer Report 2021. Alzheimer’s Disease International.
[3] World Health Organization (2023) Dementia.
[4] Soria, L.J., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255.
https://doi.org/10.1016/B978-0-12-804766-8.00013-3
[5] Yang, C., Yang, Q., Xiang, Y., et al. (2023) The Neuroprotective Effects of Oxygen Therapy in Alzheimer’s Disease: A Narrative Review. Neural Regeneration Research, 18, 57-63.
https://doi.org/10.4103/1673-5374.343897
[6] Kverno, K. (2022) New Treatment Aimed at Preventing Alzheimer’s Dementia. Journal of Psychosocial Nursing and Mental Health Services, 60, 11-14.
https://doi.org/10.3928/02793695-20220324-02
[7] Cummings, J., Lee, G., Nahed, P., et al. (2022) Alzheimer’s Disease Drug Development Pipeline: 2022. Alzheimers & Dementia: Translational Research & Clinical Interventions, 8, e12295.
https://doi.org/10.1002/trc2.12295
[8] Nielsen, R.E., Grøntved, S., Lolk, A., et al. (2022) Real-World Effects of Anti-Dementia Treatment on Mortality in Patients with Alzheimer’s Dementia. Medicine, 101, e31625.
https://doi.org/10.1097/MD.0000000000031625
[9] Garcia, M.J., Leadley, R., Lang, S., et al. (2023) Real-World Use of Symptomatic Treatments in Early Alzheimer’s Disease. Journal of Alzheimers Disease, 91, 151-167.
https://doi.org/10.3233/JAD-220471
[10] Baker, J.E., Lim, Y.Y., Pietrzak, R.H., et al. (2017) Cognitive Impairment and Decline in Cognitively Normal Older Adults with High Amyloid-β: A Meta-Analysis. Alzheimers & Dementia: Translational Research & Clinical Interventions, 6, 108-121.
https://doi.org/10.1016/j.dadm.2016.09.002
[11] Huang, Y.R. and Liu, R.T. (2020) The Toxicity and Polymorphism of β-Amyloid Oligomers. International Journal of Molecular Sciences, 21, Article 4477.
https://doi.org/10.3390/ijms21124477
[12] Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554.
https://doi.org/10.2147/IJN.S200490
[13] Agis-Torres, A., Solhuber, M., Fernandez, M., et al. (2014) Multi-Target-Directed Ligands and Other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Current Neuropharmacology, 12, 2-36.
https://doi.org/10.2174/1570159X113116660047
[14] Johnson, K.A., Schultz, A., Betensky, R.A., et al. (2016) Tau Positron Emission Tomographic Imaging in Aging and Early Alzheimer Disease. Annals of Neurology, 79, 110-119.
https://doi.org/10.1002/ana.24546
[15] Hamano, T., Enomoto, S., Shirafuji, N., et al. (2021) Autophagy and Tau Protein. International Journal of Molecular Sciences, 22, Article 7475.
https://doi.org/10.3390/ijms22147475
[16] Zhang, H., Wei, W., Zhao, M., et al. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192.
https://doi.org/10.7150/ijbs.57078
[17] Shi, Y., Manis, M., Long, J., et al. (2019) Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. Journal of Experimental Medicine, 216, 2546-2561.
https://doi.org/10.1084/jem.20190980
[18] Tapia-Rojas, C., Cabezas-Opazo, F., Deaton, C.A., et al. (2019) It’s All about Tau. Progress in Neurobiology, 175, 54-76.
https://doi.org/10.1016/j.pneurobio.2018.12.005
[19] Contestabile, A. (2011) The History of the Cholinergic Hypothesis. Behavioural Brain Research, 221, 334-340.
https://doi.org/10.1016/j.bbr.2009.12.044
[20] Li, Y., Fan, H., Sun, J., et al. (2020) Circular RNA Expression Profile of Alzheimer’s Disease and Its Clinical Significance as Biomarkers for the Disease Risk and Progression. The International Journal of Biochemistry & Cell Biology, 123, Article ID: 105747.
https://doi.org/10.1016/j.biocel.2020.105747
[21] Bekdash, R.A. (2021) The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 1273.
https://doi.org/10.3390/ijms22031273
[22] Feng, W., Destain, H., Smith, J.J., et al. (2022) Maintenance of Neurotransmitter Identity by Hox Proteins through a Homeostatic Mechanism. Nature Communications, 13, Article No. 6097.
https://doi.org/10.1038/s41467-022-33781-0
[23] Rand, J.B. (2007) Acetylcholine. WormBook.
https://doi.org/10.1895/wormbook.1.131.1
[24] Sharma, P., Srivastava, P., Seth, A., et al. (2019) Comprehensive Review of Mechanisms of Pathogenesis Involved in Alzheimer’s Disease and Potential Therapeutic Strategies. Progress in Neurobiology, 174, 53-89.
https://doi.org/10.1016/j.pneurobio.2018.12.006
[25] Hampel, H., Mesulam, M.M., Cuello, A.C., et al. (2018) The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141, 1917-1933.
https://doi.org/10.1093/brain/awy132
[26] Collingridge, G.L., Olsen, R.W., Peters, J., et al. (2009) A Nomenclature for Ligand-Gated Ion Channels. Neuropharmacology, 56, 2-5.
https://doi.org/10.1016/j.neuropharm.2008.06.063
[27] Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C., et al. (2018) Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell, 175, 1520-1532.E15.
https://doi.org/10.1016/j.cell.2018.10.043
[28] Sanabria-Castro, A., Alvarado-Echeverria, I. and Monge-Bonilla, C. (2017) Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24, 46-54.
https://doi.org/10.1159/000464422
[29] Campos, C., Rocha, N.B., Vieira, R.T., et al. (2016) Treatment of Cognitive Deficits in Alzheimer’s Disease: A Psychopharmacological Review. Psychiatria Danubina, 28, 2-12.
[30] Zhu, C.C., Fu, S.Y., Chen, Y.X., et al. (2020) Advances in Drug Therapy for Alzheimer’s Disease. Current Medical Science, 40, 999-1008.
https://doi.org/10.1007/s11596-020-2281-2
[31] Yao, W., Yang, H. and Yang, J. (2022) Small-Molecule Drugs Development for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 1019412.
https://doi.org/10.3389/fnagi.2022.1019412
[32] Abou, B.D. (2022) An Ethnopharmacological Review on the Therapeutical Properties of Flavonoids and Their Mechanisms of Actions: A Comprehensive Review Based on up to Date Knowledge. Toxicology Reports, 9, 445-469.
https://doi.org/10.1016/j.toxrep.2022.03.011
[33] 高迪, 张海英. 阿尔茨海默病治疗药物——aducanumab[J]. 临床药物治疗杂志, 2022, 20(12): 51-55.
[34] De La Torre, B.G. and Albericio, F. (2022) The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 27, Article 1075.
https://doi.org/10.3390/molecules27031075
[35] Ferrero, J., Williams, L., Stella, H., et al. (2016) First-In-Human, Double-Blind, Placebo-Controlled, Single-Dose Escalation Study of Aducanumab (BIIB037) in Mild-to-Moderate Alzheimer’s Disease. Alzheimers & Dementia: Translational Research & Clinical Interventions, 2, 169-176.
https://doi.org/10.1016/j.trci.2016.06.002
[36] Sevigny, J., Chiao, P., Bussière, T., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56.
https://doi.org/10.1038/nature19323
[37] Lin, L., Hua, F., Salinas, C., et al. (2022) Quantitative Systems Pharmacology Model for Alzheimer’s Disease to Predict the Effect of Aducanumab on Brain Amyloid. CPT: Pharmacometrics & Systems Pharmacology, 11, 362-372.
https://doi.org/10.1002/psp4.12759
[38] Herring, W.L., Gould, I.G., Fillit, H., et al. (2021) Predicted Lifetime Health Outcomes for Aducanumab in Patients with Early Alzheimer’s Disease. Neurology and Therapy, 10, 919-940.
https://doi.org/10.1007/s40120-021-00273-0
[39] Shi, M., Chu, F., Zhu, F., et al. (2022) Impact of Anti-Amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Frontiers in Aging Neuroscience, 14, Article 870517.
https://doi.org/10.3389/fnagi.2022.870517
[40] Karimi, N., Bayram, Ç.F., Arslan, E., et al. (2022) Tau Immunotherapy in Alzheimer’s Disease and Progressive Supranuclear Palsy. International Immunopharmacology, 113, Article ID: 109445.
https://doi.org/10.1016/j.intimp.2022.109445
[41] Imbimbo, B.P., Ippati, S., Watling, M., et al. (2022) A Critical Appraisal of Tau-Targeting Therapies for Primary and Secondary Tauopathies. Alzheimers & Dementia: Translational Research & Clinical Interventions, 18, 1008-1037.
https://doi.org/10.1002/alz.12453
[42] Martinez, A., Alonso, M., Castro, A., et al. (2002) First Non-ATP Competitive Glycogen Synthase Kinase 3 β (GSK-3β) Inhibitors: Thiadiazolidinones (TDZD) as Potential Drugs for the Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry, 45, 1292-1299.
https://doi.org/10.1021/jm011020u
[43] Serenó, L., Coma, M., Rodríguez, M., et al. (2009) A Novel GSK-3β Inhibitor Reduces Alzheimer’s Pathology and Rescues Neuronal Loss in Vivo. Neurobiology of Disease, 35, 359-367.
https://doi.org/10.1016/j.nbd.2009.05.025
[44] Hu, J.P., Xie, J.W., Wang, C.Y., et al. (2011) Valproate Reduces Tau Phosphorylation via Cyclin-Dependent Kinase 5 and Glycogen Synthase Kinase 3 Signaling Pathways. Brain Research Bulletin, 85, 194-200.
https://doi.org/10.1016/j.brainresbull.2011.03.006
[45] Qiang, L., Sun, X., Austin, T.O., et al. (2018) Tau Does Not Stabilize Axonal Microtubules But Rather Enables Them to Have Long Labile Domains. Current Biology, 28, 2181-2189.E4.
https://doi.org/10.1016/j.cub.2018.05.045
[46] Cheng, H. and Huang, G. (2018) Synthesis and Activity of Epothilone D. Current Drug Targets, 19, 1866-1870.
https://doi.org/10.2174/1389450119666180803122118
[47] Zhang, B., Carroll, J., Trojanowski, J.Q., et al. (2012) The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 32, 3601-3611.
https://doi.org/10.1523/JNEUROSCI.4922-11.2012
[48] Atri, A. (2019) Current and Future Treatments in Alzheimer’s Disease. Seminars in Neurology, 39, 227-240.
https://doi.org/10.1055/s-0039-1678581
[49] Soeda, Y. and Takashima, A. (2020) New Insights into Drug Discovery Targeting Tau Protein. Frontiers in Molecular Neuroscience, 13, Article 590896.
https://doi.org/10.3389/fnmol.2020.590896
[50] Karami, A., Eriksdotter, M., Kadir, A., et al. (2019) CSF Cholinergic Index, a New Biomeasure of Treatment Effect in Patients with Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 12, Article 476562.
https://doi.org/10.3389/fnmol.2019.00239
[51] Sharma, K. (2019) Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Molecular Medicine Reports, 20, 1479-1487.
https://doi.org/10.3892/mmr.2019.10374
[52] Asamoah Botchway, B.O. and Iyer, I.C. (2017) Alzheimer’s Disease—The Past, the Present and the Future. Science Journal of Clinical Medicine, 6, 1-19.
https://doi.org/10.11648/j.sjcm.20170601.11
[53] Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., et al. (2013) Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology, 11, 315-335.
https://doi.org/10.2174/1570159X11311030006
[54] Li, N., Wang, J., Ma, J., et al. (2015) Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 103985.
https://doi.org/10.1155/2015/103985
[55] Liu, Y., Zhang, Y., Zheng, X., et al. (2018) Galantamine Improves Cognition, Hippocampal Inflammation, and Synaptic Plasticity Impairments Induced by Lipopolysaccharide in Mice. Journal of Neuroinflammation, 15, Article No. 112.
https://doi.org/10.1186/s12974-018-1141-5
[56] Dou, K.X., Tan, M.S., Tan, C.C., et al. (2018) Comparative Safety and Effectiveness of Cholinesterase Inhibitors and Memantine for Alzheimer’s Disease: A Network Meta-Analysis of 41 Randomized Controlled Trials. Alzheimers Research & Therapy, 10, Article No. 126.
https://doi.org/10.1186/s13195-018-0457-9
[57] Fish, P.V., Steadman, D., Bayle, E.D. and Whiting, P. (2019) New Approaches for the Treatment of Alzheimer’s Disease. Bioorganic & Medicinal Chemistry Letters, 29, 125-133.
https://doi.org/10.1016/j.bmcl.2018.11.034
[58] Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125.
https://doi.org/10.2174/1570159X18666200528142429
[59] Matsunaga, S., Kishi, T. and Iwata, N. (2015) Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLOS ONE, 10, e123289.
https://doi.org/10.1371/journal.pone.0123289
[60] Danysz, W. and Parsons, C.G. (2012) Alzheimer’s Disease, β-Amyloid, Glutamate, NMDA Receptors and Memantine—Searching for the Connections. British Journal of Pharmacology, 167, 324-352.
https://doi.org/10.1111/j.1476-5381.2012.02057.x
[61] Xia, P., Chen, H.S., Zhang, D., et al. (2010) Memantine Preferentially Blocks Extrasynaptic over Synaptic NMDA Receptor Currents in Hippocampal Autapses. Journal of Neuroscience, 30, 11246-11250.
https://doi.org/10.1523/JNEUROSCI.2488-10.2010
[62] Briggs, R., Kennelly, S.P. and O’Neill, D. (2016) Drug Treatments in Alzheimer’s Disease. Clinical Medicine Journal, 16, 247-253.
https://doi.org/10.7861/clinmedicine.16-3-247
[63] Mcshane, R., Westby, M.J., Roberts, E., et al. (2019) Memantine for Dementia. Cochrane Database of Systematic Reviews, 3, CD003154.
https://doi.org/10.1002/14651858.CD003154.pub6
[64] 宋美潓. 美金刚联合脑电磁治疗阿尔茨海默症伴痴呆行为精神症状的影响分析[J]. 中国冶金工业医学杂志, 2023, 40(6): 685-686.
[65] Zuo, X., Dai, H., Zhang, H., et al. (2018) A Peptide-WS2 Nanosheet Based Biosensing Platform for Determination of β-Secretase and Screening of Its Inhibitors. Analyst, 143, 4585-4591.
https://doi.org/10.1039/C8AN00132D
[66] Kumar, A., Tiwari, A. and Sharma, A. (2018) Changing Paradigm from One Target One Ligand towards Multi-Target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of in Silico Methods in Multi-Target Directed Ligands Design. Current Neuropharmacology, 16, 726-739.
https://doi.org/10.2174/1570159X16666180315141643
[67] Waller, E.S., Yardeny, B.J., Fong, W.Y., et al. (2022) Altered Peripheral Factors Affecting the Absorption, Distribution, Metabolism, and Excretion of Oral Medicines in Alzheimer’s Disease. Advanced Drug Delivery Reviews, 185, Article ID: 114282.
https://doi.org/10.1016/j.addr.2022.114282