[1]
|
M. L. Li, W. Wang, and Z. H. Lu. Genomic analysis of DNA-protein interaction by chromatin immunoprecipitation. Hereditas, 2010, 32(3): 219-228.
|
[2]
|
C. Chen, H. Wan, and Q. Zhou. The next generation sequencing technology and its application in cancer research. Chinese Jour-nal of Lung Cancer, 2010, 13(2): 154-159.
|
[3]
|
Browser UG. UCSC Genome Browser: Wiggle Track Format (WIG)[URL]. http://genome.ucsc.edu/goldenPath/help/wiggle.html, 2011-7-16 /2011-7-16.
|
[4]
|
Welcome Trust Sanger Institute, Genome Research Limited. GFF (General Feature Format) Specifications Document—Welcome Trust Sanger Institute [URL]. http://www.sanger.ac.uk/resources/software/gff/spec.html, 2011 -4-19/2011-7-16.
|
[5]
|
H. Jiang, W. H. Wong. SeqMap: Mapping massive amount of oligonucleotides to the genome. Bioinformatics, 2008, 24(20): 2395-2396.
|
[6]
|
H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 2008, 18(11): 1851-1858.
|
[7]
|
B. Langmead, C. Trapnell, M. Pop, et al. Ultrafast and mem-ory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 2009, 10(3): R25.
|
[8]
|
S. M. Rumble, P. Lacroute, A. V. Dalca, et al. SHRiMP: Accu-rate mapping of short color-space reads. PLoS Comput Biol, 2009, 5(5): Article ID e1000386.
|
[9]
|
B. D. Ondov, A. Varadarajan, K. D. Passalacqua, et al. Efficient mapping of Applied Biosystems SOLiD sequence data to a ref-erence genome for functional genomic applications. Bioinfor-matics, 2008, 24(23): 2776-2777.
|
[10]
|
H. Ji, H. Jiang, W. Ma, et al. An integrated software system for analyzing ChIP-Chip and ChIP-Seq data. Nat Biotechnol, 2008, 26(11): 1293-1300.
|
[11]
|
D. S. Johnson, A. Mortazavi, R. M. Myers, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science, 2007, 316(5830): 1497-1502.
|
[12]
|
Y. Zhang, T. Liu, C. A. Meyer, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 2008, 9(9): R137.
|
[13]
|
Z. S. Qin, J. Yu, J. Shen, et al. HPeak: An HMM-based algo-rithm for defining read-enriched regions in ChIP-Seq data. BMC Bioinformatics, 2010, 11: 369.
|
[14]
|
A. P. Fejes, G. Robertson, M. Bilenky, et al. FindPeaks 3.1: A tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics, 2008, 24(15): 1729-1730.
|
[15]
|
R. Jothi, S. Cuddapah, A. Barski, et al. Genome-wide identifica-tion of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res., 2008, 36(16): 5221-5231.
|
[16]
|
A. Barski, S. Cuddapah, K. Cui, et al. High-resolution profiling of histone methylations in the human genome. Cell, 2007, 129(4): 823-837.
|
[17]
|
T. S. Mikkelsen, M. Ku, D. B. Jaffe, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Na-ture, 2007, 448(7153): 553-560.
|
[18]
|
G. Robertson, M. Hirst, M. Bainbridge, et al. Genome-wide profiles of STAT1 DNA association using chromatin immuno-precipitation and massively parallel sequencing. Nature Methods, 2007, 4(8): 651-657.
|
[19]
|
J. Eid, A. Fehr, J Gray, et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910): 133-138.
|