数量表征的偏侧化效应
The Lateralization Effect of Numerical Representation
DOI: 10.12677/AP.2012.23021, PDF, HTML, XML, 下载: 3,582  浏览: 12,603 
作者: 王荣燕*, 荆秀娟*, 常 运*:西南大学心理学院;王一峰*:电子科技大学生命科学与技术学院;李 红*:辽宁师范大学心理发展与教育研究中心
关键词: 数量表征偏侧化语言视空间系统文化复用理论Numerical Representation; Lateralization; Language; Visuospatial System; Cultural Recycling Hypothesis
摘要: 数量可以分为物理量(非符号量)和符号量。物理量是一种在进化中形成的先验知识,人类在此基础上又创造出符号量来精确地表征数量关系。研究表明物理量与符号量的表征存在偏侧化现象:物理量的表征依赖于视空间系统对客体的加工,更多地表现出右半球优势;符号量表征则具有左半球优势,这可能是文化和大脑成熟共同作用的结果。文化复用理论强调文化对脑功能的塑造,可以用来解释数量表征偏侧化的演变,也暗示了数量认知的生存意义
Abstract: Number could be divided into two categories: the numerosity (or non-symbolic number) and the symbolic number. Numerosity is a kind of priori knowledge formed in evolution. Human further created the symbolic number based on numerosity to accurately describe relationships among numbers. The lateralization representations of both numerosity and symbolic number were demonstrated by considerable studies. The representation of numerosity was associated with object processing of visuospatial system of right hemisphere, while the left priority of symbolic number might be the result of interaction between culture and brain maturity. A cultural recycling hypothesis, which focused on the modulation of culture to human brain, may shed light on the evolution of the lateralization effect of numerical representation, and further implied the survival significance of numerical cognition.
文章引用:王荣燕, 荆秀娟, 王一峰, 常运, 李红 (2012). 数量表征的偏侧化效应. 心理学进展, 2(3), 127-133. http://dx.doi.org/10.12677/AP.2012.23021

参考文献

[1] 曹晓华, 闫晋斌, 段海丹(2012). 大脑偏侧化的模型及新进展. 常州工学院学报: 社会科学版, 5期, 23-26.
[2] 王乃弋, 罗跃嘉, 李红(2006). 两种数量表征系统. 心理科学进展, 4期, 610-617.
[3] 王一峰, 王荣燕, 李红(2011). 感数的认知机制: 从注意到工作记忆. 心理科学进展, 7期, 967-975.
[4] Andrew, R., Tommasi, L., & Ford, N. (2000). Motor control by vision and the evolution of cerebral lateralization. Brain and Language, 73, 220-235.
[5] Ansari, D., Donlan, C., Thomas, M. S. C., Ewing, S. A., Peen, T., & Karmiloff-Smith, A. (2003). What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 85, 50-62.
[6] Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). Neural correlates of symbolic number processing in children and adults. NeuroReport, 16, 1769-1773.
[7] Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: An event-related functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 18, 1820-1828.
[8] Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9, 278- 291.
[9] Arp, S., & Fagard, J. (2005). What impairs subitizing in cerebral palsied children? Developmental Psychobiology, 47, 89-102.
[10] Arp, S., Taranne, P., & Fagard, J. (2006). Global perception of small numerosities (subitizing) in cerebral-palsied children. Journal of Clinical and Experimental Neuropsychology, 28, 405-419.
[11] Audoin, B., Ibarrola, D., Duong, M. V. A., Pelletier, J., Confort-Gouny, S., Malikova, I., et al. (2005). Functional MRI study of PASAT in normal subjects. Magnetic Resonance Materials in Physics, Biology and Medicine, 18, 96-102.
[12] Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10, 1-10.
[13] Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18, 425-428.
[14] Butterworth, B. (1999). The mathematical brain. London: Macmillan.
[15] Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol, 4, e125.
[16] Cappelletti, M., Barth, H., Fregni, F., Spelke, E., & Pascual-Leone, A. (2007). rTMS over the intraparietal sulcus disrupts numerosity processing. Experimental Brain Research, 179, 631-642.
[17] Chassy, P., & Grodd, W. (2011). Comparison of quantities: Core and format-dependent regions as revealed by fMRI. Cerebral Cortex, 22, 1420.
[18] Chochon, F., Cohen, L., Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617-630.
[19] Chong, S. C., & Evans, K. K. (2011). Distributed versus focused attention (count vs estimate). Wiley Interdisciplinary Reviews: Cognitive Science, 2, 634-638.
[20] Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., & Goebel, R. (2007). Notation-dependent and -independent representations of numbers in the parietal lobes. Neuron, 53, 307-314.
[21] Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-42.
[22] Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. From Monkey Brain to Human Brain, 8, 133-157.
[23] Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384-398.
[24] Demeyere, N., Rotshtein, P., & Humphreys, G. W. (2012). The neuroanatomy of visual enumeration: Differentiating necessary neural correlates for subitizing versus counting in a neuropsychological voxel-based morphometry study. Journal of Cognitive Neuroscience, 24, 948-964.
[25] De Smedt, B., Grabner, R. H., & Studer, B. (2009). Oscillatory EEG correlates of arithmetic strategy use in addition and subtraction. Experimental Brain Research, 195, 635-642.
[26] Dormal, V., Andres, M., & Pesenti, M. (2008). Dissociation of numerosity and duration processing in the left intraparietal sulcus: A transcranial magnetic stimulation study. Cortex, 44, 462-469.
[27] Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307-314.
[28] Finnerty, J., Pang, K., Burton, P., Paulson, D., & Martindale, M. (2004). Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science, 304, 1335-1137.
[29] Ghirlanda, S., Frasnelli, E., & Vallortigara, G. (2009). Intraspecific competition and coordination in the evolution of lateralization. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 861-866.
[30] Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47, 604-608.
[31] Hews, D., Castellano, M., & Hara, E. (2004). Aggression in females is also lateralized: Left-eye bias during aggressive courtship rejection in lizards. Animal Behaviour, 68, 1201-1207.
[32] Holloway, I. D., Price, G. R., & Ansari, D. (2010). Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage, 49, 1006-1017.
[33] Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435-448.
[34] Jackson, N., & Coney, J. (2004). Right hemisphere superiority for subitising. Laterality: Asymmetries of Body, Brain and Cognition, 9, 53-66.
[35] Julien, C., Thompson, J., Neary, D., & Snowden, J. (2008). Arithmetic knowledge in semantic dementia: Is it invariably preserved? Neuropsychologia, 46, 2732-2744.
[36] Kadosh, R. C., Muggleton, N., Silvanto, J., & Walsh, V. (2010). Double dissociation of format-dependent and number-specific neurons in human parietal cortex. Cerebral Cortex, 20, 2166-2171.
[37] Lavidor, M., Brinksman, V., & Göbel, S. M. (2004). Hemispheric asymmetry and the mental number line:comparison of double-digit numbers. Neuropsychologia, 42, 1927-1933.
[38] Le Clec’H, G., Dehaene, S., Cohen, L., Mehler, J., Dupoux, E., Poline, J., Le Bihan, D. (2000). Distinct cortical areas for names of numbers and body parts independent of language and input modality. Neuroimage, 12, 381-391.
[39] Libertus, M. E., Brannon, E. M., & Woldorff, M. G. (2011). Parallels in stimulus-driven oscillatory brain responses to numerosity changes in adults and seven-month-old infants. Developmental Neuropsychology, 36, 651-667.
[40] Lyon, B. (2003). Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature, 422, 495-499.
[41] MacNeilage, P. F., Rogers, L. J., & Vallortigara, G. (2009). Origins of the left & right brain. Scientific American, 301, 60-73.
[42] Neary, D., & Snowden, J. S. (2010). Personal experience and arithmetic meaning in semantic dementia. Neuropsychologia, 48, 278-287.
[43] Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6, 177-190.
[44] Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208.
[45] Pasini, M., & Tessari, A. (2001). Hemispheric specialization in quanti- fication processes. Psychological Research, 65, 57-63.
[46] Piazza, M., Mechelli, A., Price, C. J., & Butterworth, B. (2006). Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 1106, 177-188.
[47] Pinel, P., & Dehaene, S. (2010). Beyond hemispheric dominance: Brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere. Journal of Cognitive Neuroscience, 22, 48- 66.
[48] Rivera, S., Reiss, A., Eckert, M., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779-1790.
[49] Roggeman, C., Fias, W., & Verguts, T. (2010). Salience maps in parietal cortex: Imaging and computational modeling. NeuroImage, 52, 1005-1014.
[50] Roitman, J. D., Brannon, E. M., & Platt, M. L. (2007). Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biology, 5, e208.
[51] Rosenberg-Lee, M., Barth, M., & Menon, V. (2011). What difference does a year of schooling make? Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving. Neuroimage, 57, 796-808.
[52] Sandrini, M., & Rusconi, E. (2009). A brain for numbers. Cortex, 45, 796-803.
[53] Santens, S., Roggeman, C., Fias, W., & Verguts, T. (2010). Number processing pathways in human parietal coetex. Cerebral Cortex, 20, 77-88.
[54] Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475-487.
[55] Siniscalchi, M., Sasso, R., Pepe, A. M., Vallortigara, G., & Quaranta, A. (2010). Dogs turn left to emotional stimuli. Behavioural Brain Research, 208, 516-521.
[56] Spelke, E., & Kinzler, K. (2007). Core knowledge. Developmental Science, 10, 89-96.
[57] Vallortigara, G., & Rogers, L. (2005). Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behavioral and Brain Sciences, 28, 575-589.
[58] Vetter, P., Butterworth, B., & Bahrami, B. (2010). A candidate for the attentional bottleneck: Set-size specific modulation of the right TPJ during attentive enumeration. Journal of Cognitive Neuroscience, 23, 728-736.
[59] Wilson, M., Britton, N., & Franks, N. (2002). Chimpanzees and the mathematics of battle. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269, 1107-1112.
[60] Xu, F. (2003). The development of object individuation in infancy. Progress in Infancy Research, 3, 159-192.
[61] Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10-month- old infants. British Journal of Developmental Psychology, 25, 103-108.
[62] Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1-B11.