Stroop任务中冲突适应的神经机制述评
Neural Mechanisms of Conflict Adaptation in the Stroop Task: A Review
摘要: 在一致性任务中,如Stroop任务、Flanker任务和Simon任务,冲突适应表现为不一致试次之后的一致性效应(不一致试次与一致试次的行为差异)显著地小于一致试次之后的一致性效应。本文以Stroop任务为例,介绍冲突适应的神经机制。事件相关电位研究显示,N450的波幅调整与大脑对冲突的监测有关,持续电位(sustained potential, SP)的波幅调整与冲突解决有关。时频分析显示,大脑θ频带(theta-band, 4~7 Hz)的能量增加可能与冲突适应有关。功能磁共振研究显示,前扣带回(anterior cingulate cortex, ACC)和背外侧前额叶(dorsolateral prefrontal cortex, DLPFC)分别在冲突监测和冲突控制过程中扮演着重要角色。最后,该文介绍了冲突适应及其神经机制研究的新进展。
Abstract: In the congruency tasks, e.g., Stroop task, Flanker task, and Simon task, conflict adaptation refers to smaller congruency effects which are indexed by the performance differences between incongruent and congruent trials following incongruent compared with congruent trials. This paper introduces the neural mechanisms of conflict adaptation in the Stroop task. The event-related potentials (ERPs) studies demonstrate that the N450 is mainly correlated with conflict monitoring; the conflict sustained potential (SP) is mainly related to conflict resolution. The time-frequency analysis displays that the increased magnitude of theta-band (4 - 7 Hz) may index conflict adaptation. Some functional magnetic resonance imaging (fMRI) studies reveal that anterior cingulate cortex (ACC) and (dorsolateral prefrontal cortex) DLPFC play important roles in the processes of conflict monitoring and control implemention. New progresses are discussed in the studies of neural mechanisms of conflict adaptation at last.
文章引用:唐丹丹, 陈安涛. Stroop任务中冲突适应的神经机制述评[J]. 心理学进展, 2013, 3(1): 48-56. http://dx.doi.org/10.12677/AP.2013.31009

参考文献

[1] 唐丹丹, 刘培朵, 陈安涛(2012). 冲突观察能诱发冲突适应. 心理学报, 44期, 295-303.
[2] 唐丹丹, 陈安涛(2012). 冲突观察所诱发的冲突适应: ERP研究. 中国科学:生命科学, 42期, 1110-1117.
[3] Appelbaum, L., Meyerhoff, K., & Woldorff, M. (2009). Priming and backward influences in the human brain: Processing interactions during the Stroop interference effect. Cerebral Cortex, 19, 2508- 2521.
[4] Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cerebral Cortex, 11, 837-848.
[5] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psycholo- gical Review, 108, 624-652.
[6] Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict moni- toring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539-546.
[7] Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179-180.
[8] Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747-749.
[9] Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367-379.
[10] Casey, B., Thomas, K. M., Welsh, T. F., Badgaiyan, R. D., Eccard, C. H., Jennings, J. R., et al. (2000). Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 97, 8728-8733.
[11] Cavanagh, J. F., Cohen, M. X., & Allen, J. J. B. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. The Journal of Neuroscience, 29, 98-105.
[12] Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49, 3198-3209.
[13] Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2011). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49, 220-238.
[14] Chen, A., Bailey, K., Tiernan, B. N., & West, R. (2011). Neural correlates of stimulus and response interference in a 2-1 mapping stroop task. International Journal of Psychophysiology, 80, 129-138.
[15] Clayson, P. E., & Larson, M. J. (2011a). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49, 1953-1961.
[16] Clayson, P. E., & Larson, M. J. (2011b). Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology, 48, 1621-1630.
[17] Cohen, M. X. (2011). It’s about Time. Frontiers in Human Neuroscience, 5, 2.
[18] Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30.
[19] Cohen, M. X., Ridderinkhof, K. R., Haupt, S., Elger, C. E., & Fell, J. (2008). Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion. Brain Research, 1238, 127-142.
[20] Correa, Á., Rao, A., & Nobre, A. C. (2009). Anticipating conflict facilitates controlled stimulus-response selection. Journal of Cognitive Neuroscience, 21, 1461-1472.
[21] Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46, 1288-1298.
[22] Di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19, 275-286.
[23] Donohue, S. E., Liotti, M., Perez, R., & Woldorff, M. G. (2011). Is conflict monitoring supramodal? Spatiotemporal dynamics of cogni- tive control processes in an auditory Stroop task. Cognitive, Affective, & Behavioral Neuroscience, 12, 1-15.
[24] Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380-390.
[25] Egner, T. (2011). Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control. Journal of Cognitive Neuroscience, 23, 3903-3913.
[26] Egner, T., & Hirsch, J. (2005a). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784-1790.
[27] Egner, T., & Hirsch, J. (2005b). The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage, 24, 539- 547.
[28] Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. Neuro- Image, 18, 42-57.
[29] Floden, D., Vallesi, A., & Stuss, D. T. (2011). Task context and frontal lobe activation in the Stroop task. Journal of Cognitive Neuroscience, 23, 867-879.
[30] Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psycho- physiology, 45, 152-170.
[31] Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Para- metric manipulation of the conflict signal and control-state adapta- tion. Journal of Cognitive Neuroscience, 23, 923-935.
[32] Franke, C., Reuter, B., Breddin, A., & Kathmann, N. (2009). Response switching in schizophrenia patients and healthy subjects: Effects of the inter-response interval. Experimental Brain Research, 196, 429- 438.
[33] Freitas, A. L., Banai, R., & Clark, S. L. (2009). When cognitive control is calibrated: Event-related potential correlates of adapting to infor- mation-processing conflict despite erroneous response preparation. Psychophysiology, 46, 1226-1233.
[34] Gratton, G., Coles, M. G., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480-506.
[35] Grinband, J., Savitsky, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2010). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303-311.
[36] Hanslmayr, S., Pastötter, B., Bäuml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215-225.
[37] Iyer, A., Lindner, A., Kagan, I., & Andersen, R. A. (2010). Motor pre-paratory activity in posterior parietal cortex is modulated by subjec- tive absolute value. PLoS Biology, 8, Article ID: e1000444.
[38] Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759-763.
[39] Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17, 4302-4311.
[40] Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., & Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. The Journal of Neuroscience, 30, 8512-8518.
[41] Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33, 399-405.
[42] Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023-1026.
[43] Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Johnson, M. K., Stenger, V. A., Aizenstein, H., et al. (2005). Decreased conflict-and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162, 1833-1839.
[44] Kopp, B., & Rist, F. (1999). An event-related brain potential substrate of disturbed response monitoring in paranoid schizophrenic patients. Journal of Abnormal Psychology, 108, 337-346.
[45] Larson, M. J., Farrer, T. J., & Clayson, P. E. (2011). Cognitive control in mild traumatic brain injury: Conflict monitoring and conflict ad- aptation. International Journal of Psychophysiology, 82, 69-78.
[46] Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009a). Conflict adaptation and cognitive control adjustments following traumatic brain injury. Journal of the International Neuropsychological Society, 15, 927-937.
[47] Larson, M. J., Kaufman, D. A. S., & Perlstein, W. M. (2009b). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47, 663-670.
[48] Liotti, M., Woldorff, M. G., Perez III, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701-711.
[49] Liston, C., Matalon, S., Hare, T. A., Davidson, M. C., & Casey, B. (2006). Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron, 50, 643-653.
[50] Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115, 1821-1835.
[51] MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163-203.
[52] Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8, 204- 210.
[53] Mansouri, F. A., Tanaka, K., & Buckley, M. J. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the pre- frontal cortex. Nature Reviews Neuroscience, 10, 141-152.
[54] Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C., & Weis- brod, M. (2004). Prefrontal-cingulate activation during executive control: Which comes first? Cognitive Brain Research, 18, 278-287.
[55] Matsumoto, K., & Tanaka, K. (2004). Conflict and cognitive control. Science, 303, 969-970.
[56] Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450-452.
[57] Milham, M., Banich, M., Claus, E., & Cohen, N. (2003). Practice- related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. NeuroImage, 18, 483-493.
[58] Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefron- tal cortex function. Annual review of neuroscience, 24, 167-202.
[59] Mitchell, R. L. C. (2010). Linear increases in BOLD response associ- ated with increasing proportion of incongruent trials across time in a colour Stroop task. Experimental Brain Research, 203, 193-204.
[60] Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7, 1-17.
[61] Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J. C., Boom- sma, D. I., & de Geus, E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 1260-1272.
[62] Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122, 2185- 2194.
[63] Peng, W., Hu, L., Zhang, Z., & Hu, Y. (2012). Causality in the associa- tion between P300 and alpha event-related desynchronization. PLoS One, 7, Article ID: e34163.
[64] Perlstein, W. M., Larson, M. J., Dotson, V. M., & Kelly, K. G. (2006). Temporal dissociation of components of cognitive control dysfunc- tion in severe TBI: ERPs and the cued-Stroop task. Neuropsycholo- gia, 44, 260-274.
[65] Pfurtscheller, G., & Lopes da Silva, F. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110, 1842-1857.
[66] Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148.
[67] Raghavachari, S., Lisman, J. E., Tully, M., Madsen, J. R., Bromfield, E., & Kahana, M. J. (2006). Theta oscillations in human cortex during a working-memory task: Evidence for local generators. Journal of Neurophysiology, 95, 1630-1638.
[68] Reuter, B., Philipp, A. M., Koch, I., & Kathmann, N. (2006). Effects of switching between leftward and rightward pro-and antisaccades. Biological Psychology, 72, 88-95.
[69] Roelofs, A., van Turennout, M., & Coles, M. G. (2006). Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proceedings of the National Academy of Sciences of the United States of America, 103, 13884-13889.
[70] Salo, R., Ursu, S., Buonocore, M. H., Leamon, M. H., & Carter, C. (2009). Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: A functional magnetic resonance imaging study. Biological Psychiatry, 65, 706-709.
[71] Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., et al. (2012). Human dorsal anterior cingulate cor- tex neurons mediate ongoing behavioural adaptation. Nature, 488, 218-221.
[72] Silton, R. L., Heller, W., Towers, D. N., Engels, A. S., Spielberg, J. M., Edgar, J. C., et al. (2010). The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. NeuroImage, 50, 1292-1302.
[73] Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Ex- perimental Psychology: Human Perception and Performance, 28, 1345-1363.
[74] Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
[75] Tiesinga, P., Fellous, J. M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 9, 97-107.
[76] Trujillo, L. T., & Allen, J. J. B. (2007). Theta EEG dynamics of the error-related negativity. Clinical Neurophysiology, 118, 645-668.
[77] Tsujimoto, T., Shimazu, H., & Isomura, Y. (2006). Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. Journal of neurophysiology, 95, 2987-3000.
[78] van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77, 477-482.
[79] van Veen, V., & Carter, C. S. (2006). Conflict and cognitive control in the brain. Current Directions in Psychological Science, 15, 237-240.
[80] Wang, C., Ulbert, I., Schomer, D. L., Marinkovic, K., & Halgren, E. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of Neuroscience, 25, 604-613.
[81] Wang, L., Liu, X., Guise, K. G., Knight, R. T., Ghajar, J., & Fan, J. (2010). Effective connectivity of the fronto-parietal network during attentional control. Journal of Cognitive Neuroscience, 22, 543-553.
[82] Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90, 1195- 1268.
[83] West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122-1135.
[84] West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 8, 157-164.
[85] West, R., & Alain, C. (2000). Evidence for the transient nature of a neural system supporting goal-directed action. Cerebral Cortex, 10, 748-752.
[86] West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiol- ogy, 41, 739-748.
[87] West, R., Choi, P., & Travers, S. (2010). The influence of negative affect on the neural correlates of cognitive control. International Jour- nal of Psychophysiology, 76, 107-117.
[88] West, R., Jakubek, K., Wymbs, N., Perry, M., & Moore, K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167, 38-48.
[89] Womelsdorf, T., Schoffelen, J. M., Oostenveld, R., Singer, W., Desi- mone, R., Engel, A. K., et al. (2007). Modulation of neuronal inter- actions through neuronal synchronization. Science, 316, 1609-1612.
[90] Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativ- ity. Psychological Review, 111, 931-959.
[91] Zhang, Z., Hu, L., Hung, Y., Mouraux, A., & Iannetti, G. (2012). Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. The Jour- nal of Neuroscience, 32, 7429-7438.
[92] Zysset, S., Müller, K., Lohmann, G., & Von Cramon, D. Y. (2001). Color-word matching Stroop task: separating interference and response conflict. NeuroImage, 13, 29-36.