微纳米尺度下流体边界滑移研究进展
Progress of Research on the Boundary Slip of Fluid Flows at the Micro-Nanometer Scale
DOI: 10.12677/APF.2013.31002, PDF, HTML, 下载: 3,830  浏览: 12,894  国家自然科学基金支持
作者: 罗 伟:西南石油大学土木工程与建筑学院,成都
关键词: 微纳尺度流动边界滑移分子动力学 Micro-Nano Scale; Flowing; Boundary Slip; Molecular Dynamics
摘要: 页岩气、特低渗透油气藏非常规油气资源开发已经引起世界各国的高度重视这些非常规油气储层中普遍存在微纳米孔隙微纳米孔隙中流体渗流规律的研究是这类储层有效开发的理论基础。同时,随着微机电技术的发展,也迫切需要揭示微机电系统中微纳米孔隙流体运动规律。本文从微纳尺度流动研究中的若干热点问题入手,在总结微纳渗流的研究现状的基础上,重点介绍了分子动力学模拟方法在微纳米尺度渗流中的应用,最后并对微纳渗流的研究趋势进行了展望。 The exploitation of unconventional oil and gas resources, such as, shale gas and special low permeability reservoirs, has attracted the attention of the countries all over the world, these unconventional oil and gas reservoir is widespread in the micro-nanometer pore, the research of fluid seepage discipline in the micro-nanometer pore is the theoretical foundation of the effective development of these reservoir. Besides, with the development of Micro Electro Mechanical systems technology, it’s necessary to reveal fluid seepage discipline in the micro-nanometer pore. Starting from the hotspot issues in micro-nanometer fluid flowing, this paper describes the present state of research in this field, then introduces the molecular dynamics simulation method with emphasis in the application of the micro-nanometer fluid seepage. Finally, the research tendency of micro-nanometer fluid seepage in the future is forecast.

Abstract:

文章引用:罗伟. 微纳米尺度下流体边界滑移研究进展[J]. 渗流力学进展, 2013, 3(1): 9-13. http://dx.doi.org/10.12677/APF.2013.31002

参考文献

[1] 李治平, 李智锋 . 页岩气纳米级孔隙渗流动态特征 [J].开发工程, 2012, 32(4): 1-4.
[2] 周兆英 , 杨兴. 微/纳机电系统[J].仪表技术与传感器 , 2003, (2): 1.
[3] 凌智勇 , 丁建宁 , 杨继昌等 . 微流动的研究现状及影响因素 [J].江苏大学学报 , 2002, 23(6): 1.
[4] 吴承伟 , 马国军 , 周平. 流体流动的边界滑移问题研究进展 [J].力学进展, 2008, 38(3): 265-282.
[5] 黄大革 , 张根烜 . 微尺度流动模型研究 [J].电子机械工程 , 2007, 23(3): 59-64.
[6] P. A. Thompson, M. O. Robbins. Shear flow near solids: Epi¬taxial order and flow boundary condition. Physical Review A, 1990, 41(12): 6830-6837.
[7] P. A. Thompson, S. M. Troian. A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389(6649): 360-362.
[8] M. Sun, C. Ebner. Molecular dynamics study of flow at a fluid-wall interface. Physical Review Letters, 1992, 69: 3491-3494.
[9] J. L. Barrat, L. Bocquet. Large slip effect at a nonwetting fluid-solid on smooth hydrophobic surfaces: Intrinsic effects and pos- sible artifacts. Physical Review Letters, 1999, 82(23): 4671-4674.
[10] G. Nagayama, P. Cheng. Effects of interface wettability on micro- scale flow by molecular dynamics simulation. International Jour¬nal of Heat Mass Transfer, 2004, 47: 501-513.
[11] M. Cieplak, J. Koplik and J. R. Banavar. Boundary conditions at a fluid-solid interface. Physical Review Letters, 2001, 86(5): 803-806.
[12] K. P. Travis, B. D. Todd and D. J. Evans. Poiseuille flow of mo- lecular fluids. Physica A, 1997, 240(1-2): 315-327.
[13] K. P. Travis, K. E. Gubbins. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. Journal of Chemical Physics, 2000, 112(4): 1984-1994.
[14] 曹炳阳, 陈民, 过增元. 粗糙微通道内气体流动的分子动力学研究[J].工程热物理学报 , 2004, 25(增刊): 131-134.
[15] 徐超, 何雅玲 , 王勇. 纳米通道滑移流动的分子动力学模拟研究[J].工程热物理学报 , 2005, 26(6): 912-914.
[16] B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system. Journal of Chemical Physics, 1957, 27: 1208-1209.
[17] 解辉, 刘朝. 纳米通道内表面浸润性对气泡的作用 [J].物理化学学报, 2009, 25(12): 2537-2542.
[18] 顾骁坤 , 陈民. 纳米硅通道内滑移现象的分子动力学模拟 [J].工程热物理学报 , 2010, 31(10): 1724-1726.
[19] 亓文鹏, 涂育松 , 万荣正等 . 提高水分子流出纳米碳管速度的特殊水分子偶极排布研究 [J].应用数学和力学 , 2011, 32(9): 1030-1036.