石油储层渗流力学模型的研究进展及其本质
The Petroleum Reservoirs Percolation Mechanics Model Research Progress and Its Internal Essence
DOI: 10.12677/APF.2013.31003, PDF, HTML, XML, 下载: 3,520  浏览: 15,611  国家自然科学基金支持
作者: 龚 玮, 狄勤丰, 张任良, 王新亮, 丁伟朋:上海大学,上海市应用数学和力学研究所,上海;上海大学,上海市力学在能源工程中的应用重点实验室,上海
关键词: 石油储层渗流力学模型内在本质多孔介质流体介质 Petroleum Reservoirs; Seepage Models; Internal Essence; Porous Media; Fluid
摘要:

渗流力学是研究流体在多孔介质中运动规律的科学,在很多科学和工程技术领域中得到广泛的运用。石油工程面临的对象变化很大,使得相关的渗流力学问题及相关模型繁多而复杂。本文对石油储层中的多种渗流力学问题进行了全面的分析,对其涉及的力学机制进行了深入研究,探讨了石油储层渗流力学基本模型,探明了石油工程中各种提高采收率技术(如化学驱油技术、微生物采油技术、气驱采油技术、热力采油技术等)所涉及渗流力学模型的本质,对采用不同井型(如直井、定向井、水平井等)开发方式时的渗流力学模型也进行了本质分析。结果表明,不论是何种技术环境,其渗流规律均可以表述为渗流力学基本方程在特殊条件下的改进模型。本文结果对研究新问题的渗流力学模型具有重要指导意义。

Percolation mechanics, a discipline that deals with fluid flow in porous media, has widespread applications in many aspects, especially in petroleum engineering. Due to include a range of objects, there are many various and complex seepage mechanics problems and related models in the petroleum engineering. Various percolation mechanics problems are comprehensively analyzed, and the internal mechanism of different types of fluid in different reservoir media is discussed in oil reservoir, such as polymer flooding, surfactant flooding, combination flooding, microbial enhanced oil recovery. The internal mechanism of percolation mechanics model in different type of well is also conducted. The results show that, in whichever technological factors, its laws of percolation are all able to be described as the modified models of percolation mechanical fundamental equation under special circumstance. The conclusion of this paper can provide a reference for new percolation mechanical models in the study of new subjects, as well as a forecast of the works on percolation mechanics in oil reservoir in the next stage.

Abstract:

文章引用:龚玮, 狄勤丰, 张任良, 王新亮, 丁伟朋. 石油储层渗流力学模型的研究进展及其本质[J]. 渗流力学进展, 2013, 3(1): 14-23. http://dx.doi.org/10.12677/APF.2013.31003

参考文献

[1] H. Daroy. Les fontaines publiques de la ville de Dijon. Dalmont, Paris, 1856.
[2] D. Yin, H. Pu. A numerical simulation study on surfactant flooding and it’s field application in Daqing oilfield. Europec/ EAGE Conference and Exhibition, Rome, 9-12 June 2008.
[3] 张有天. 岩石水力学与工程[M]. 中国水利水电出版社, 2005.
[4] Z.-G. Feng, E. E. Michaelides. Secondary flow within a river bed and contaminant transport. Environmental Fluid Mechanics,2009, 9(6): 617-634.
[5] A. R. A. Khaled, K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. International Journalof Heat and Mass Transfer, 2003, 46(26): 4989-5003.
[6] C. Nicholson. Diffusion and related transport mechanisms in brain tissue. Reports on Progress in Physics, 2001, 64: 815.
[7] C. L. A. Berli, M.L. Olivares. Electrokinetic flow of non-Newtonian fluids in microchannels. Journal of Colloid and Interface Science, 2008, 320(2): 582-589.
[8] J. Marsh. Comparing hydrogen permeation rates, corrosion rates and sulphide stress cracking resistance for C-110 and P-110 casing steel. CORROSION, Nashville, 11-15 March 2007.
[9] I. Y. Akkutlu, E. Fathi. Gas transport in shales with local kerogen heterogeneities. SPE Annual Technical Conference and Exhibition, Denver, 30 October-2 November 2011.
[10] N. Pilisi, D. Lewis. Hydrodynamic loads, soil and structure interaction in conductor design for offshore platforms and jack-up rigs. IADC/SPE Drilling Conference and Exhibition,San Diego, 6-8 March 2012.
[11] 王新亮, 狄勤丰, 张任良. 超疏水表面滑移理论及其减阻应 用研究进展[J]. 力学进展, 2010, 40(3): 241-249.
[12] Q. Di, C. Gu and X. Wang. Experimental investigation of drag reduction in micro-channels with surfaces adsorbed hydrophobic nanoparticles. Proceedings of the 9th International Conference on Hydrodynamics, 2010.
[13] Q. Di, C. Shen and Z. Wang. Innovative drag reduction of flow in rock. International Oil and Gas Conference and Exhibition in China, Beijing, 8-10 June 2010.
[14] G. Al-Muntasheri, H. Nasr-El-Din and K. R. Al-Noaimi. A study of polyacrylamide-based gels crosslinked with polyethyleneimine. SPE Journal, 2009, 14(2): 245-251.
[15] J. Smith. Quantative evaluation of polyacrylamide crosslinked gels for use in enhanced oil recovery. International ACS Sympo- sium, 1986.
[16] 赵国忠. 变启动压力梯度三维三相渗流数值模拟方法[J].石油学报, 2007, 27(B12): 119-123.
[17] J. Wang, H. Q. Liu and Z. X. Pang. The investigation of thresh-old pressure gradient of foam flooding in porous media. Petro-Petroleum Science and Technology, 2011, 29(23): 2460-2470.
[18] F. Hao, L. Cheng and O. Hassan. Threshold pressure gradient in ultra-low permeability reservoirs. Petroleum Science and Tech- nology, 2008, 26(9): 1024-1035.
[19] L. Klinkenberg. The permeability of porous media to liquids and gases. Drilling and Production Practice, 1941.
[20] F. Civan. Effective correlation of apparent gas permeability in tight porous media. Transport in Porous Media, 2010, 82(2): 375-384.
[21] G. Hu, H. Wang and X. Fan. Mathematical model of coalbed gas flow with klinkenberg effects in multi-physical fields and its analytic solution. Transport in Porous Media, 2009, 76(3): 407420.
[22] 孔祥言. 高等渗流力学 [M].中国科学技术大学出版社 , 1999.
[23] 郭尚平, 刘慈群, 阎庆来. 渗流力学的新发展 [J].力学进展,1986, 16(4): 441-454.
[24] W. R. Schowalter. Mechanics of non-Newtonian fluids. Perga-mon press, New York, 1978.
[25] J. Douglas Jr., D. Peaceman and H. Rachford Jr. A method for calculating multi-dimensional immiscible displacement. Trans-action of AIME, 1959, 216: 297.
[26] A. Seethepalli, B. Adibhatla and K. Mohanty. Wettability altera- tion during surfactant flooding of carbonate reservoirs. SPE/ DOE Symposium on Improved Oil Recovery, Tulsa, 17-21 April 2004.
[27] W. Schinagl, M. Caskie and S. Green. Most successful batch application of surfactant in North Sea Gas Wells. Offshore Europe, Aberdeen, 4-7 September 2007.
[28] 庞明军 , 魏进家 . 表面活性剂减阻溶液湍流流动研究进展 [J].力学进展, 2010, 40(2): 129-146.
[29] B. Caudle, M. Witte. Production potential changes during sweep-out in a five-spot system. Journal of Petroleum Technology, 1959, 12(12): 63-65.
[30] D. PYE. Improved secondary recovery by control of water mo- bility. Journal of Petroleum Technology, 1964, 16(8): 911-916.
[31] B. Sandiford. Laboratory and field studies of water floods using polymer solutions to increase oil recoveries. Journal of Petro- leum Technology, 1964, 16(8): 917-922.
[32] D. Wang, R. Seright and Z. Shao. Key aspects of project design for polymer flooding at the Daqing Oilfield. SPE Reservoir Eva-luation & Engineering, 2008, 11(6): 1117-1124.
[33] F. Wassmuth, W. Arnold and K. Green. Polymer flood applica- tion to improve heavy oil recovery at east Bodo. Journal of Ca- nadian Petroleum Technology, 2009, 48(2): 55-61.
[34] D. Wang, H. Dong and C. Lv. Review of practical experience by polymer flooding at Daqing. SPE Reservoir Evaluation & Engi- neering, 2009, 12(3): 470-476.
[35] M. Khodaverdian, T. Sorop and S. Postif. Polymer flooding in unconsolidated-sand formations: Fracturing and geomechanical considerations. SPE Production & Operations, 2010, 25(2): 211-222.
[36] H. Jiang, W. Wu and D. Wang. The effect of elasticity on dis-placement efficiency in the lab and results of high-concentration polymer flooding in the field. SPE Annual Technical Conference and Exhibition, Denver, 21-24 September 2008.
[37] S. Yuan, D. Han and Q. Wang. Numerical simulator for the combination process of profile control and polymer flooding. International Oil and Gas Conference and Exhibition in China, Beijing, 7-10 November 2000.
[38] 袁士义. 聚合物地下交联调剖数学模型 [J].石油学报 , 1991, 12(1): 49-59.
[39] F. Squires. Method of recovering-oil and gas. Google Patents, 1917.
[40] P. H. Krumrine, E. Mayer and G. Brock. Scale formation during alkaline flooding. Journal of Petroleum Technology, 1985, 37(8): 1466-1474.
[41] J. Wang, M. Dong and M. Arhuoma. Experimental and numeri-cal study of improving heavy oil recovery by alkaline flooding in sandpacks. Journal of Canadian Petroleum Technology, 2010, 49(3): 51-57.
[42] K. Sorbie, P. Clifford and A. Winfrith. The simulation of poly-mer flow in heterogeneous porous media. Water-Soluble Poly-mers for Petroleum Recovery, 1988: 69-99.
[43] G. Zeito. Three dimensional numerical simulation of polymer flooding in homogeneous and heterogeneous systems. Fall Meeting of the Society of Petroleum Engineers of AIME, Hous-ton, 29 September-2 October 1968.
[44] 白玉湖, 周济福 . 油藏复杂驱动体系物理模拟相似准则研究进展[J].力学进展 , 2009, 39(1): 58-68.
[45] 鲜成钢, 郎兆新 . 三元复合驱数学模型及其应用 [J].石油大学学报, 自然科学版 , 2000, 24(2): 61-63.
[46] 张喆. ASP三元复合驱油藏数值模拟研究 [D].中国石油大学 , 2008.
[47] Y. H. Yang, W. F. Zhou and G. C. Shi. 17 years development of artificial lift technology in ASP flooding in Daqing Oilfield. SPE Enhanced Oil Recovery Conference, Kuala Lumpur, 19-21 July 2011.
[48] 袁士义. 等注化学剂驱油数值模拟 (理论部分 )[J].石油学报, 1988, 9(1): 51-60.
[49] 刘伟成, 刘昌其 . 表面活性剂损耗的动态数学模型 [J].石油学报, 1996, 17(1): 108-114.
[50] S. Yuan, P. Yang and Z. Dai. Numerical simulation of alkali/sur- factant/polymer flooding. International Meeting on Petroleum Engineering, 1995.
[51] Z. D. Lei, S. Y. Yuan and J. Song. A mathematical model for emulsion mobilization and its effect on EOR during ASP flood- ing. SPE Symposium on Improved Oil Recovery, 2008.
[52] Z. Lei, J. Song and B. Zhu. Fine numerical simulation of alka- line-surfactant-polymer flooding considering emulsion and alka-line scale mechanism. SPE Reservoir Characterisation and Si-mulation Conference and Exhibition, 2011.
[53] 邵振波 , 陈国, 孙刚. 新型聚合物驱油数学模型 [J].石油学报, 2008, 29(3): 409-413.
[54] ] 袁士义, 杨普华. 碱复合驱数学模型 [J].石油学报, 1994, 15(2): 76-88.
[55] M. Arhuoma, D. Yang and M. Dong. Numerical simulation of displacement mechanisms for enhancing heavy oil recovery during alkaline flooding. Energy & Fuels, 2009, 23(12): 5995-6002.
[56] J. Beckman. Action of bacteria on mineral oil. Journal of Indus-trial and Engineering Chemistry, 1926, 4: 10.
[57] S. Maudgalya, R. Knapp and M. McInerney. Microbially en- hanced oil recovery technologies. A review of the past, present and future. Production and Operations Symposium, Oklahoma City, 31 March-3 April 2007.
[58] C. Gao. Microbial enhanced oil recovery in carbonate reservoir: An experimental study. SPE Enhanced Oil Recovery Confer- ence, Kuala Lumpur, 19-21 July 2011.
[59] M. Amro. Multidisciplinary challenge for microbial enhanced oil recovery (MEOR). SPE Saudi Arabia Section Technical Sympo- sium, Al-Khobar, 10-12 May 2008.
[60] 谷建伟, 刘彦卫. 微生物在多孔介质中渗流的数学模型[J].生物数学学报 , 2004, 18(4): 423-426.
[61] C. Yao, G. Lei and J. Ma. Experiment and simulation of indige-nous microbial enhanced oil recovery (IMEOR). International Petroleum Technology Conference, Bangkok, 7-9 February 2012.
[62] M. R. Ghadimi, M. Ardjmand. Simulation of microbial enhanced oil recovery. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 5-8 November 2006.
[63] 雷光伦, 高联益. 微生物驱油数学模型 [J]. 石油大学学报 , 自然科学版, 2001, 25(2): 46-49.
[64] M. M. Chang, F. T. H. Chung, R. Bryant. Modeling and labora- tory investigation of microbial transport phenomena in porous media. SPE Annual Technical Conference and Exhibition, Dallas, 6-9 October 1991.
[65] J. D. Bu’Lock, B. Kristiansen and J. B.lock. Basic biotechnol-ogy. Waltham: Academic Press, 1987. Copyright . 2013 Hanspub
[66] I. Zahari, M. Omar and K. Foo. Simulation analysis of microbial well treatment of Bokor field, Malaysia. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, 18-20 October 2004.
[67] K. Elena, M. Aleksandr. Primary and secondary porosity estima- tion of carbonate formations using total porosity and the forma- tion factor. SPE Annual Technical Conference and Exhibition, San Antonio, 29 September-2 October 2002.
[68] M. Liu, Z. Chen. A new numerical method of simulating two-dimensional two-phase flow through media with single and dou- ble porosity. Journal of Canadian Petroleum Technology, 1989, 28(2): 106-112.
[69] S. Xue, X. Tong and Y. Yuan. A coupled double-porosity model for water-oil flow in deformable fissured sandstone reservoirs. Canadian International Petroleum Conference, Calgary, 13-15 June 2006.
[70] C. Bennett, A. Reynolds and R. Raghavan. Performance of fi- nite-conductivity, vertically fractured wells in single-layer res- ervoirs. SPE Formation Evaluation, 1986, 1(4): 399-412.
[71] S. Vongvuthipornchai, R. Raghavan. Pressure falloff behavior in vertically fractured wells: Non-Newtonian power-law fluids. SPE Formation Evaluation, 1987, 2(4): 573-589.
[72] 邓英尔, 刘慈群. 两相流体椭圆渗流数学模拟与开发计算方法 [J].石油学报 , 1999, 20(5): 48-53.
[73] J. Stalder, G. York and R. Kopper. Multilateral-horizontal wells increase rate and lower cost per barrel in the Zuata field, Faja, Venezuela. SPE International Thermal Operations and Heavy Oil Symposium, Porlamar, 12-14 March 2001.
[74] R. Kumar, S. Ramanan and J. Narasimham. Redevelopment of a matured multilayered carbonate offshore field through high technology horizontal and multilateral wells. SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, 5-6 December 2005.
[75] Z. Chen, M. Duan and S. Miska. Hydraulic predictions for poly-mer-thickened foam flow in horizontal and directional wells. SPE/IADC Drilling Conference, Amsterdam, 20-22 February 2007.
[76] M. Milligan, M. Andreychuk and B. Lunan. Coiled tubing drill- ing of horizontal sidetrack in house mountain field, Alberta. SPE Drilling & Completion, 2000, 15(2): 92-96.