基于弱外延生长的有机薄膜晶体管的研究
The Research of OTFTs Based on Weak Epitaxy Growth
DOI: 10.12677/APP.2013.32010, PDF, HTML, 下载: 3,778  浏览: 11,219  科研立项经费支持
作者: 洪 飞, 谭 莉, 朱棋锋:上海中科高等研究院新型显示技术研究中心,上海;向长江, 郭晓东, 申剑锋
关键词: 有机薄膜晶体管弱外延生长p-6P酞菁化合物 Organic Thin Film Transistor; Weak Epitaxy Growth; p-6P; Phthalocyanines
摘要: 采用弱外延生长(Weak Epitaxy Growth, WEG)的方法制备OTFTs,研究了不同衬底温度对诱导层p-6P生长形貌的影响,以及WEG-OTFTs器件特性与诱导层形貌的关系。另外,还研究了诱导层p-6P的厚度变化对WEG-OTFTs场效应迁移率的影响。研究发现随着p-6P厚度增加WEG-OTFTs的场效应迁移率是一个先上升后下降然后再上升再下降的过程。我们在诱导层p-6P的厚度2 nm,衬底温度180度时得到了最大的OTFTs场效应迁移率1.03 cm2/Vs。
Abstract: OTFTs were prepared by the method of WEG (Weak Epitaxy Growth). The results showed that substrate temperature strongly affected the growth morphology of p-6P inducement layer, and the relationship between WEG- OTFTs device characteristics and the morphology of p-6P inducement layer. Furthermore, OTFTs device performance depending on the thickness of p-6P inducement layer was disclosed. We found that as the p-6P thickness rose up continuously, the WEG-OTFTs mobility increased at first then decreased, and increased again and then decreased at last. The maximum field effect mobility we obtained was 1.03 cm2/Vs at the conditions of p-6P layer thickness of 2 nm and the substrate temperature of 180˚C.

文章引用:洪飞, 谭莉, 朱棋锋, 向长江, 郭晓东, 申剑锋. 基于弱外延生长的有机薄膜晶体管的研究[J]. 应用物理, 2013, 3(2): 50-55. http://dx.doi.org/10.12677/APP.2013.32010

参考文献

[1] T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, et al. Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Applied Physics Letters, 2004, 85(18): 4205-4207.
[2] J. Zaumseil, R. H. Friend and H. Sirringhaus. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Materials, 2006, 5(1): 69-74.
[3] B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, et al. Large- scale complementary integrated circuits based on organic tran- sistors. Nature, 2000, 403(6769): 521-523.
[4] T. Someya, T. Sekitani, S. Iba, Y. Kato, et al. A large-area, flexi- ble pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Acad- emy of Sciences USA, 2004, 101(27): 9966-9970.
[5] K. Takimiya, Y. Kunugi, Y. Kouda, et al. 2,7-diphenyl[1] benzo- selenopheno[3,2-b] [1]benzoselenophene as a stable organic se- miconductor for a high-performance field-effect transistor. Journal of the American Chemical Society, 2006, 128(9): 3044-3050.
[6] K. Yamada, J. Takeya, K. Shigeto, K. Tsukagoshi, Y. Aoyagi and Y. Iwasa. Charge transport of copper phthalocyanine single- crystal field-effect transistors stable above 100˚C. Applied Phy- sics Letters, 2006, 88(12): Article ID: 122110.
[7] Z. Bao, A. J. Lovinger and A. Dodabalapur. Organic field— Effect transistors with high mobility based on copper phthalo- cyanine. Applied Physics Letters, 1996, 69(20): 3066-3068.
[8] T. W. Kelly, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones. High performance organic thin film transistors. Materials Research Society Symposium Proceedings, 2003: 169-179.
[9] F. Hong, X. Guo and J. Wang. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor. Organic Electronics, 2009, 10(6): 1097-1101.
[10] R. Zeis, T. Siegrist and C. Kloc. Single-crystal field-effect tran- sistors based on copper phthalocyanine. Applied Physics Letters, 2005, 86(2): Article ID: 022103.
[11] H. B. Wang, F. Zhu, J. L. Yang, Y. H. Geng and D. H. Yan. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Advanced Materials, 2008, 19(16): 2168- 2171.
[12] H. B. Wang, X. J. Wang, H. C. Huang and D. H. Yan. Isotype heterojunction between organic crystalline semiconductors. Applied Physics Letters, 2008, 93(10): Article ID: 103307.
[13] H. B. Wang, X. J. Wang, B. Yu, Y. H. Geng and D. H. Yan. p-p isotype organic heterojunction and ambipolar field-effect tran- sistors. Applied Physics Letters, 2008, 93(11): Article ID: 113303.
[14] C. H. Li, F. Pan and D. H. Yan. Very low hysteresis organic thin-film transistors. Semiconductor Science and Technology, 2009, 24(8): Article ID: 085009.
[15] X. Liu, Y. Bai, Z.-L. Zhang, et al. Organic thin film transistors with double insulator layers. Journal of Optoelectronics Laser, 2008, 5: 577-580.
[16] F. Garnier, G. Horowitz, X. Z. Peng and D. Fichou. Structural basis for high carrier mobility in conjugated oligomers. Syn- thetic Metals, 1991, 2: 163-171.
[17] G. Horowitz. Organic field-effect transistors. Advanced Materi- als, 1998, 10(5): 365-377.
[18] G. Horowitz, R. Hajlaoui, D. Fichou and A. E. Kassmi. Gate volt- age dependent mobility of oligothiophene field-effect transistors. Journal of Applied Physics, 1999, 85(6): 3202-3206.