撤稿:微通道分离式热管结构参数优化及其换热特性研究
Thermal-Hydraulic Performance Optimization of Micro-Channel Separate Heat Pipes: A Structural Parameter Study
摘要: 撤稿声明:“ 微通道分离式热管结构参数优化及其换热特性研究”一文刊登在2025年4月出版的《建模与仿真》2025年第14卷第4期第253-264页上。因作者学术不端,根据国际出版流程,编委会现决定撤除此稿件:金梦慧. 微通道分离式热管结构参数优化及其换热特性研究[J]. 建模与仿真, 2025, 14(4): 253-264. https://doi.org/10.12677/mos.2025.144283 更多撤稿细节:文章页面(https://www.hanspub.org/journal/PaperInformation?paperID=111654)。
文章引用:金梦慧. 撤稿:微通道分离式热管结构参数优化及其换热特性研究[J]. 建模与仿真, 2025, 14(4): 253-264. https://doi.org/10.12677/mos.2025.144283

参考文献

[1] 中国通服数字基建产业研究院. 中国数据中心产业发展白皮书[M]. 2023版. 南京: 中国通服数字基建产业研究院, 2023.
[2] Wang, X., Wen, Q., Yang, J., Xiang, J., Wang, Z., Weng, C., et al. (2022) A Review on Data Centre Cooling System Using Heat Pipe Technology. Sustainable Computing: Informatics and Systems, 35, Article 100774.
https://doi.org/10.1016/j.suscom.2022.100774
[3] 李改莲, 时子超, 张志伟, 金听祥, 邵双全, 田长青. 数据机房用热管复合式空调节能性试验研究[J]. 低温与超导, 2016, 44(10): 67-71.
[4] Okazaki, T. and Seshimo, Y. (2011) Cooling System Using Natural Circulation for Air Conditioning. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 25, 239-251.
[5] Okazaki, T., Sumida, Y. and Matsushita, A. (1999) Development of Vapor Compression Refrigeration Cycle with a Natural-Circulation Loop. Mitsubishi Electric Corporation.
[6] Lee, S., Song, J., Kim, Y. and Chung, J.T. (2006) Experimental Study on a Novel Hybrid Cooler for the Cooling of Telecommunication Equipments.
[7] Lee, S., Kang, H. and Kim, Y. (2009) Performance Optimization of a Hybrid Cooler Combining Vapor Compression and Natural Circulation Cycles. International Journal of Refrigeration, 32, 800-808.
https://doi.org/10.1016/j.ijrefrig.2008.12.008
[8] Kim, M. and Bullard, C.W. (2002) Air-Side Thermal Hydraulic Performance of Multi-Louvered Fin Aluminum Heat Exchangers. International Journal of Refrigeration, 25, 390-400.
https://doi.org/10.1016/s0140-7007(01)00025-1
[9] Gnielinski, V. (1976) New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows. International Chemical Engineering, 16, 359-368.
[10] Kim, S. and Mudawar, I. (2013) Universal Approach to Predicting Saturated Flow Boiling Heat Transfer in Mini/Micro-Channels—Part II. Two-Phase Heat Transfer Coefficient. International Journal of Heat and Mass Transfer, 64, 1239-1256.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014
[11] Friedel, L. (1979) Improved Friction Pressure Drop Correlation for Horizontal and Vertical Two-Phase Pipe Flow. European Two-Phase Flow Group Meeting, Ispra, 5-8 June 1979, E2.