Bi2Te3纳米线的液相法合成及其结构表征
Liquid-Phase Synthesis and Characterization of Bi2Te3 Nanowires
DOI: 10.12677/CMP.2013.24013, PDF, HTML, 下载: 3,524  浏览: 13,178  国家科技经费支持
作者: 凌明恩, 肖云军, 朱小红:四川大学材料科学与工程学院,成都
关键词: 热电材料液相法Bi2Te3纳米线结构分析Thermoelectric Material; Liquid-Phase Synthesis; Bi2Te3 Nanowires; Structural Analysis
摘要: 利用热电材料能够实现温差发电和热电制冷,所以可以有效地缓解日趋严重的能源危机,Bi2Te3目前是室温条件下热电性能最好的热电材料材料的低维化能够很大程度地提升其自身的性能Bi2Te3纳米线具有更好的热电转换效率。利用液相法能够很成功和方便地在实验室合成Bi2Te3纳米线实验中先反应生成Te纳米线胶体溶液,然后再在其基础上合成Bi2Te3纳米线热处理温度选定为170,研究发现加热反应的时间会显著影响所制备样品的结晶性。实验中按照不同的加热反应时间来分成三组进行对比,通过X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)分析其结构和形貌,对比得知加热90 min所制备的Bi2Te3纳米线的结晶度和产率都比加热30 min60 min的要好,表明液相法合成Bi2Te3纳米线需要一个较长的反应过程,适量延长加热反应时间有助于获得较高结晶质量的Bi2Te3纳米线。 Thermoelectric materials, which can covert heat to electric energy for power generation and conversely con- vert electric energy to heat energy for refrigeration, thereby alleviate the growing energy crisis effectively.Bi2Te3 is currently the best thermoelectric material for room temperature applications. Materials of lower dimensions can be used to obtain better properties, and therefore,Bi2Te3 nanowires have higher thermoelectric conversion efficiencies. In this work, we prepared Bi2Te3 nanowires very conveniently by using the liquid-phase synthesis method. Firstly, we syn- thesized Te nanowires colloidal solution, and then synthesized

Bi2Te3 nanowires on the basis of it. The heating tem- perature was optimally set at 170˚C, while it was found that the heating reaction time affected greatly the crystallinity of the Bi2Te3 nanowires. Three sample groups were divided according to different heating reaction time. After synthesis, we analyzed systematically their structures and morphologies by XRD, SEM, and TEM. The crystallinity and yield of the third sample group, whose heating reaction time is 90 min, is much better than those of the other two groups, namely 30 min and 60 min, indicating that a long reaction process is required for the liquid-phase synthesis of

Bi2Te3 nanowires and thus lengthening appropriately the heating reaction time is helpful in achieving highly crystalline Bi2Te3 nanowires.

Abstract:
文章引用:凌明恩, 肖云军, 朱小红. Bi2Te3纳米线的液相法合成及其结构表征[J]. 凝聚态物理学进展, 2013, 2(4): 97-102. http://dx.doi.org/10.12677/CMP.2013.24013

参考文献

[1] 郭磊, 姬广斌 (2009) 低维Bi2Te3基热电材料的研究进展. 材料导报, 11, 34-37.
[2] 王文忠, 张爱琴, 于丽雯 (2013) 溶剂热法合成Bi2Te3低维纳米结构及其表征. 中央民族大学学报(自然科学版), 5, 5-10.
[3] 王晓琳, 姜洪义 (2010) Bi2Te3基半导体合金的结构与性能. 武汉理工大学学报, 19, 5-7.
[4] Zhang, G.Q., Yu, Q.X., Yao, Z. and Li, X.G. (2009) Large scale highly crystalline Bi2Te3 nanotubes through solution phase nano- scale Kirkendall effect fabrication. Chemical Communications, 17, 2317-2319.
[5] Cao, Y.Q., Zhao, X.B. (2008) Syntheses and thermoelectric properties of Bi2Te3/ Sb2Te3 bulk nanocomposites with laminated nanostructure. American Institute of Physicists, 92, 143106.1- 143106.3.
[6] 章根强 (2009) 热电纳米材料的液相法合成及物性研究. 合肥: 中国科学技术大学.
[7] Zhou, J., Wang, Y.Y. (2012) Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites. American Physical Society, 85, 115020.1-115020.11.
[8] 吉晓华, 赵新兵等 (2004) Bi2Te3纳米颗粒和纳米线的溶剂热合成及组织特征. 中国有色金属学报, 9, 1456-1460.
[9] 刘哲, 任国仲, 卿冠兰 (2012) Bi2Te3的水热合成及其高温高压烧结. 材料导报, 11, 125-133.
[10] Pelz, U., Kaspar, K., Schmidt, S. and Dold, M. (2012) An aqueous- chemistry approach to nano-bismuth telluride and nano-anti- mony telluride as thermoelectric materials. Journal of Electric Materials, 41, 1851-1857.
[11] 孙晨曦, 周丽娜, 张孝彬, 赵新兵, 沈美 (2010) Bi2Te3/碳纳米管复合材料的制备方法. 材料科学与工程学报, 2, 296-303.
[12] Kim, C., Kim, D.H. and Han, Y.S. (2011) Fabrication of anti- mony telluride nanoparticles using a brief chemical synthetic process under atmospheric conditions. Journal of Alloys and Compounds, 509, 609-613.
[13] Shi, W.D., Zhou, L., Song, S.Y. and Yang, J.H. (2008) Hydro- thermal synthesis and thermoelectric transport properties of im- purity-free antimony telluride hexagonal nanoplates. Advanced Materials, 20, 1892-1897.
[14] 樊希安等 (2013) 一维Bi2Te3基纳米材料的制备、结构控制与热点性能. 功能材料, 44, 305-316.
[15] Anderson, M.E. (2010) Modified polyol synthesis of bulk-scale nanostructured bismuth antimony telluride. Journal of Materials Chemistry, 20, 8362-8367.