聚乙二醇对非负载型Ni-Mo催化剂结构及加氢脱硫性能的影响
Effect of PEG on the Structure and Hydrodesulfurization Performance of Unsupported Ni-Mo Catalyst
DOI: 10.12677/HJCET.2013.36038, PDF, HTML, 下载: 3,692  浏览: 13,616 
作者: 殷长龙*, 白振江, 赵蕾艳, 张俊萍, 刘晨光:中国石油大学,重质油国家重点实验室,CNPC催化重点实验室,青岛
关键词: 非负载型加氢催化剂聚乙二醇二苯并噻吩加氢脱硫超低硫柴油Unsupported Hydrotreating Catalyst; PEG; Dibenzothiophene; Hydrodesulfurization; Ultra Low Sulfur Diesel
摘要: 非负载型加氢催化剂由于金属含量高,因而具有较高的加氢活性。然而目前采用水热法合成获得的金属活性相之间容易产生聚集而降低其分散度,从而影响其活性的发挥。本文采用非离子型的水溶性聚合物聚乙二醇(PEG)作为助剂来增加非负载型催化剂的分散性,考察了聚乙二醇对催化剂晶形结构、孔结构和表面形貌等性质的影响,并以二苯并噻吩(DBT)和催化裂化(FCC)柴油为原料对催化剂活性进行了评价。结果表明,加入聚乙二醇后,其非负载型催化剂晶粒间形成许多囊泡结构,金属分散度大有提高;同时催化剂颗粒表面疏松多孔,增加了可暴露活性位数量。活性评价结果表明,PEG的加入可明显提高非负载型Ni-Mo催化剂的加氢脱硫活性。
Abstract: The unsupported hydrotreating catlyst has high hydrogenation activity owing to its high metal content. While the metal active phase over the unsupported catalyst is easy to gather, and then reduces its dispersion during the proc-ess of hydrothermal synthesis, which affects the activity of the catalyst. The non-ionic water-soluble polymer polyeth-ylene glycol (PEG) was adopted as additives to increase the dispersion of the unsupported catalyst, and the effect of PEG on the crystal structure, pore structure and surface morphology of the catalyst was examined. The activities of the catalysts were evaluated by hydrotreating dibenzothiophene (DBT) and fluid catalytic cracking (FCC) diesel. The analysis results from SEM and HRTEM showed that after adding PEG, many vesicles were formed between the catalyst grains which greatly improved the metal dispersion. At the same time, the catalyst particles surface was more porous which increased the number of the active sites exposed to reactant. The activity evaluation results revealed that the ad-dition of PEG could obviously improve the HDS activity of the unsupported Ni-Mo catalyst.
文章引用:殷长龙, 白振江, 赵蕾艳, 张俊萍, 刘晨光. 聚乙二醇对非负载型Ni-Mo催化剂结构及加氢脱硫性能的影响[J]. 化学工程与技术, 2013, 3(6): 208-214. http://dx.doi.org/10.12677/HJCET.2013.36038

参考文献

[1] Kallinikos, L.E., Jess, A. and Papayannakos, N.G. (2010) Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil. Journal of Catalysis, 269, 169-178.
[2] Song, C. (2003) An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86, 211-263.
[3] Abghari, S.Z., Shokri, S., Baloochi, B., et al. (2011) Analysis of sulfur removal in gasoil hydrodesulfurization process by application of response surface methodology. Chemical Engineering Journal, 28, 93-98.
[4] Marafi, A., Al-Hindi, A. and Stanislaus, A. (2007) Deep desulfurization of full range and low boiling diesel streams from Kuwait Lower Fars heavy crude. Fuel Processing Technology, 88, 905-911.
[5] Yin, C., Zhao, L., Bai, Z., Liu, H., Liu, Y. and Liu, C. (2013) A novel porous ammonium nickel molybdate as the catalyst precursor towards deep hydrodesulfurization of gas oil. Fuel, 107, 873-878.
[6] Okamoto, Y., Breysse, M., Dhar, G.M. and Song, C. (2003) Effect of support in hydrotreating catalysis for ultra clean fuels. Catalysis Today, 86, 1-3.
[7] Pawelec, B., Fierro, J.L.G., Montesinos, A. and Zepeda, T.A. (2008) Influence of the acidity of nanostructured CoMo/P/Ti- HMS catalysts on the HDS of 4,6-DMDBT reaction pathways. Applied Catalysis B, 80, 1-14.
[8] Aguirre-Gutiérreza, A., Montoya Fuentea, J.A., Reyesb, J.A., Angel, P. and Vargas, A. (2011) Palladium effect over Mo and NiMo/alumina-titania sulfided catalysts on the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Journal of Molecular Catalysis A: Chemical, 346, 12-19.
[9] Vergov, I. and Shishkova, I. (2009) Catalyst advances promote production of near zero sulphur diesel. Petroleum & Coal, 51, 136-139.
[10] Stratiev, D., Galkin, V. and Stanulov, K. (2006) Study: Most- active catalyst improves ULSD economics. Oil & Gas Journal, 53-56.
[11] Yamaguchi, E., Uragami, Y., Yokozuka, H., Uekusa, K., Yamaguchi, T., Abe, S., et al. (1994) Catalysts for hydrotreating hydrocarbon oils and methods of preparing the same. EP: 601722.
[12] Plantenga, F.L., Eijsbouts, S. and Cerfontain, M.B. (2003) Process for preparing an additive-based mixed metal catalyst, its composition and use. US: 6566296.
[13] Seamans, J.D., Partin, J.A., Samonte, E.R. and Lockemeyer, J.R. (1996) A method of treating spontaneously combustible catalysts. EP: 0696937.
[14] 郑宇印, 刘百军 (2003) 加氢精制催化剂研究新进展. 工业催化, 7, 1-6.
[15] Eijsbouts, S., Mayo, S.W. and Fujita, K. (2007) Unsupported transition metal sulfide catalysts: From fundamentals to industrial application. Applied Catalysis A: General, 322, 58-66.
[16] 王震, 徐学军 (2008) FH-FS体相法催化剂首次工业应用. 当代石油石化, 8, 35-38.
[17] 徐学军, 刘东香, 王海涛, 等 (2007) FH-FS柴油超深度加氢脱硫催化剂的芳烃加氢性能. 工业催化, 5, 22-26.
[18] 刘迪, 张景成, 刘晨光 (2010) 非负载型加氢精制催化剂的制备及工业应用研究进展. 化工进展, 4, 643-648.
[19] Loboue, H., Guillot-Deudon, C., Popa, A.F., Lafond, A., Rebours, B., Pichon, C., et al. (2008) A novel approach to the synthesis of unsupported nickel phosphide catalysts using nickel thiophosphate as precursor. Catal Today, 130, 63-68.
[20] Plantenga, F.L., Cefortain, R., Eijsbouts, S., Houtert, F., van Anderson, G.H., Miseo, S., et al. (2003) 89 “Nebula”: A hydro- processing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 145, 407-410.
[21] Chianelli, R.R., Berhault, G. and Torres, B. (2009) Unsupported transition metal sulfide catalysts: 100 years of science and application. Catalysis Today, 147, 275-286.
[22] 梁文杰 (1995) 石油化学. 石油大学出版社, 东营, 99-100, 179-180, 371-372.