纤维金属层板的疲劳裂纹扩展行为及预测方法研究进展
Development of Fatigue Crack Growth Behaviors and Prediction Methods for Fiber Metal Laminates
DOI: 10.12677/JAST.2015.31001, PDF, HTML, XML,  被引量 下载: 2,924  浏览: 16,616  科研立项经费支持
作者: 黄 颐, 刘建中, 黄 啸:北京航空材料研究院,北京
关键词: 纤维金属层板疲劳裂纹扩展分层预测模型Fiber Metal Laminates Fatigue Crack Growth Delamination Prediction Model
摘要: 纤维金属层板(Fiber Metal Laminates,简称FMLs)是一种由金属薄板和纤维增强复合材料组成的层间混杂复合材料,具有优良的疲劳和损伤容限性能,是飞机结构的理想材料。纤维金属层板的疲劳损伤模式较为复杂,既有金属层内的裂纹扩展,又有金属/纤维层间的分层扩展,两者相互作用,增加了层板裂纹扩展速率与寿命预测的难度。国内外学者对纤维金属层板的疲劳裂纹扩展行为开展了大量的研究并取得了一定的成果。本文介绍了纤维金属层板的疲劳损伤机制,总结了恒幅载荷下纤维金属层板的疲劳裂纹扩展行为预测模型,并对变幅载荷下纤维金属层板的疲劳裂纹扩展及分层行为研究进行了概述。
Abstract: Fiber Metal Laminates (FMLs) are advanced hybrid materials combining the excellent fatigue and damage tolerant properties of metals and fiber reinforced composites, which are ideal materials for aerospace. The fatigue crack growth behavior of FMLs is complex, which includes both crack growth in the metal layers and delamination growth at the metal/fiber interfaces in wake of the metal crack. This interaction makes it harder for the prediction of crack growth rate and damage tolerance. The fatigue crack growth behavior of FMLs has been studied by many researches and valuable results were obtained. In this paper, the fatigue damage mechanism of FMLs is reviewed. The prediction models for fatigue crack growth rate and life of FMLs under constant amplitude (CA) loading are summarized. Furthermore, the researches on fatigue crack growth and delamination behaviors of FMLs under variable amplitude (VA) loading are also overviewed.
文章引用:黄颐, 刘建中, 黄啸. 纤维金属层板的疲劳裂纹扩展行为及预测方法研究进展[J]. 国际航空航天科学, 2015, 3(1): 1-12. http://dx.doi.org/10.12677/JAST.2015.31001

参考文献

[1] 曹增强 (2006) 纤维金属层板及其在飞机结构中的应用. 航空制造技术, 6, 60-62.
[2] Schijve, J. (2008) Fatigue of structures and materials. Springer-Verlag GmbH, 589-591.
[3] Marissen, R. (1980) Fatigue properties of aramid reinforced aluminium laminates (in Dutch). Ph.D. Thesis, Department of Aerospace Engineering, Delft University of Technology, The Netherlands.
[4] Gunnink, J.W. and van der Schee, P.A. (1987) Design of the Arall F-27 Lower Wing Fatigue Panel. Composite Structures. Proceedings of the 4th International Conference on Composite Structures, Scotland, 1987, 162-167.
[5] Gregory, M.A. and Reobroeks, G.H.J.J. (1992) Fiber-metal laminates: A solution to weight, strength and fatigue problems. Report of Structural Laminates Co.
[6] 益小苏 (2006) 先进复合材料技术研究与发展. 国防工业出版社, 北京.
[7] Alderliesten, R.C. (2005) Fatigue crack propagation and delamination growth in GLARE. Ph.D. Thesis, Delft University of Technology, The Netherlands.
[8] Krishnakumar, S. (1994) Fibre metal laminates-thesynthesis of metal and composite. Materials and Manufacturing Processes, 9.
[9] Young, J.B., Landry, J.G.N. and Cavoulacos, V.N. (1994) Crack growth and residual strength characteristics of two grades of glass reinforced aluminum “GLARE”. Composite Structures, 27.
[10] Vogelesang, L.B. (1980) Designing a new hybrid materials by combining high strength aluminium alloys and aramid fibers (preliminary results). Delft University Report B2-80-6.
[11] Roebroeks, G.H.J.J. (1991) Towards GLARE: The development of a fatigue insensitive and damage to-lerant aircraft material. Ph.D. Thesis, Delft University of Technology, Delft.
[12] Ohrloff, N. and Horst, P. (1992) Feasibility study of the application of GLARE materials in wide body airbus fuselages. Proceedings of 13th International Conference of SAMPE European Chapter, Hamburg, 1992, 131-142.
[13] 马宏毅 (2006) 玻璃纤维—铝合金层板的制备和性能研究. 硕士论文, 北京航空材料研究院, 北京.
[14] Vlot, A. and Gunnink, J.W. (2001) Fibre Metal Laminates: An introduction. Kluwer Academic Publishers, Dordrecht, 12-13, 24.
[15] 郭亚军 (1997) 纤维金属层板的疲劳损伤与寿命预测. 博士论文, 北京航空材料研究院, 北京.
[16] 梁中全, 薛元德, 陈绍杰, 武文静 (2005) GLARE层板的力学性能及其在A380客机上的应用. 玻璃钢/复合材料, 4, 49-50.
[17] van Veggel, L.H., Jongebreur, A.A. and Gunnink, J.W. (1987) Damage tolerance aspects of an experimental ARALL F-27 lower wing skin panel. Proceedings of the 14th ICAF Symposium, EMAS, Ottawa, 465-502.
[18] Alderliesten, R.C. and Vlot, A. (2001) Fatigue crack growth mechanism of GLARE. Proceedings of the 22nd International SAMPE Europe Conference, Paris, 2001, 41-52.
[19] Homan, J.J. (2006) Fatigue initiation in Fibre Metal Laminates. International Journal of Fatigue, 28, 366-374.
[20] Beumler, Th. (2004) Flying GLARE—A contribution to aircraft certification issues on strengths properties in non- damaged and fatigue damaged GLARE structures. Ph.D. Thesis, Delft University of Technology, Delft.
[21] Roebroeks, G. (1991) Towards GLARE—The development of a fatigue insensitive and damage tolerant aircraft material. Ph.D. Thesis, Delft University of Technology, Delft.
[22] Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T. and Kakuta, Y. (1999) Fatigue crack growth properties of a fiber/metal laminate GLARE. Proceedings of the Seventh International Fatigue Congress, Beijing, 8-12 June 1999, 1725-1730.
[23] Lin, C.T. and Kao, P.W. (1996) Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading. Acta Materialia, 44, 1181-1188.
[24] Burianek, D.A., Giannakopoulos, A.E. and Spearing, S.M. (2003) Modeling of facesheet crack growth in titanium- graphite hybrid laminates, part I. Engineering Fracture Mechanics, 70, 775-798.
[25] Burianek, D.A. and Spearing, S.M. (2003) Modeling of facesheet crack growth in titanium-graphite hybrid laminates, part II. Engineering Fracture Mechanics, 70, 799-812.
[26] de Koning, A.U. (2000) Analysis of the fatigue crack growth behaviour of “through the thickness” cracks in Fibre Metal Laminates. Report NLR-CR-2000-575, National Aerospace Laboratory NLR.
[27] Shim, D.J., Alderliesten, R.C., Spearing, S.M. and Burianek, D.A. (2003) Fatigue crack growth prediction in GLARE hybrid laminate. Composites Science and Technology, 63, 1759-1767.
[28] 黄啸 (2011) 未来民机机翼用新型纤维铝合金混合层板疲劳裂纹扩展与分层行为研究. 硕士论文, 北京航空材料研究院, 北京.
[29] Toi, R. (1995) An empirical crack growth model for fiber/metal laminates. Proceedings of the 18th Symposium of the International Committee on Aeronautical Fatigue, Melbourne, 1995, 899-909.
[30] Alderliesten, R.C. (1998) An empirical crack growth model for fiber metal laminates. Preliminary (Master) Thesis, Delft University of Technology, Delft.
[31] Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T. and Kakuta, Y. (1999) Fatigue crack growth properties of a GLARE3-5/4 fiber/metal laminate. Engineering Fracture Mechanics, 63, 253-272.
[32] Takamatsu, T., Matsumura, T., Ogura, N., Shimokawa, T. and Kakuta, Y. (1999) Fatigue crack growth of a GLARE3- 5/4 fiber/metal laminate and validity of methods for analyzing results. 20th Symposium International Committee on Aeronautical Fatigue, Bellevue, 14-16 July 1999, 841-860.
[33] Takamatsu, T., Shimokawa, T., Matsumura, T., Miyoshi, Y. and Tanabe, Y. (2003) Evaluation of fatigue crack growth behavior of GLARE3 fiber/metal laminates using compliance method. Engineering Fracture Mechanics, 70, 2603- 2616.
[34] Cox, B.N. (1996) Life prediction for bridged fatigue cracks. Life prediction methodology for titanium matrix composites. ASTM STP, Vol. 1253, 552-572.
[35] Guo, Y.J. and Wu, X.R. (1999) A phenomenological model for predicting crack growth in fiber-reinforced metal laminates under constant-amplitude loading. Composites Science and Technology, 59, 1825-1831.
[36] 郭亚军, 吴学仁 (1998) 纤维金属层板疲劳裂纹扩展速率与寿命预测的唯象模型. 航空学报, 3, 275-283.
[37] Marissen, R. (1988) Fatigue crack growth in ARALL, a hybrid aluminium-aramid composite material, crack growth mechanisms and quantitative predictions of the crack growth rate. Ph.D. Thesis, Delft University of Technology, Delft.
[38] Guo, Y.J. and Wu, X.R. (1998) A theoretical model for predicting fatigue crack growth rates in fibre-reinforced metal laminates. Fatigue & Fracture of Engineering Materials & Structures, 21, 1133-1145.
[39] Alderliesten, R.C. (2007) Analytical prediction model for fatigue crack propagation and delamination growth in GLARE. International Journal of Fatigue, 29, 628-646.
[40] Alderliesten, R.C. (1999) Development of an empirical fatigue crack growth prediction model for the fibre metal laminate Glare. Master Thesis, Delft University of Technology, Delft.
[41] Guo, Y.J. and Wu, X.R. (1999) Bridging stress distribution in center-cracked fiber reinforced metal laminates: Modelling and experiment. Engineering Fracture Mechanics, 63, 147-163.
[42] Alderliesten, R.C. (2007) On the available relevant approaches for fatigue crack propagation prediction in GLARE. International Journal of Fatigue, 29, 289-304.
[43] Wu, X.R. and Carlsson, A.J. (1991) Weight functions and stress intensity factor solutions. Pergamon Press, Oxford.
[44] Burianek, D.A. (2001) Mechanics of fatigue damage in titanium-graphite hybrid laminates. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge.
[45] Alderliesten, R.C., Schijve, J. and van der Zwaag, S. (2007) Application of the energy release rate approach for delamination growth in GLARE. Engineering Fracture Mechanics, 73, 697-709.
[46] Alderliesten, R.C. (2003) Modelling fatigue crack propagation in GLARE. Interim status report, Report TD-R-02-022, Fiber Metal Laminates Center of Competence, Delft.
[47] Lin, C.T. and Kao, P.W. (1995) Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminium laminates. Materials Science and Engineering: A, 190, 65-73.
[48] Kim, J.H. and Lee, S.B. (2000) Calculation of stress intensity factor using weight function method for a patched crack with a debonding region. Engineering Fracture Mechanics, 67, 303-310.
[49] Cox, B.N. and Rose, L.R.F. (1996) A self-consistent approximation for crack bridging by elastic/perfectly plastic ligaments. Mechanics of Materials, 22, 249-263.
[50] Wu, X.J. (2002) A higher-order theory for fiber-metal laminates. Proceedings of the 23rd International Congress on Aeronautical Sciences, Toronto, 2002, 152-158.
[51] Lekhnitskii, S.G. (1981) Theory of elasticity of an anisotropic body. Mir Publishers, Moscow.
[52] Rose, L.R.F. (1987) Crack reinforcement by distributed springs. Journal of the Mechanics and Physics of Solids, 35, 383-405.
[53] Ritchie, R.O., Yu, W.K. and Bucci, R.J. (1989) Fatigue crack propagation in ARALL® laminates: Measurement of the effect of crack-tip shielding from crack bridging. Engineering Fracture Mechanics, 32, 361-377.
[54] Homan, J. (1984) Crack opening behavior in Arall as a consequence of adhesive deformation. Ph.D. Thesis, Delft University of Technology, Delft.
[55] Yeh, J.R. (1988) Fracture mechanics of delamination in ARALL laminates. Engineering Fracture Mechanics, 30, 827- 837.
[56] Yeh, J.R. (1995) Fatigue crack growth in fiber-metal laminates. International Journal of Solids and Structures, 32, 2063-2075.
[57] Burianek, D.A. (2001) Interacting damage modes in titanium-graphite hybrid laminates. Proceedings of the 13th International Conference on Composite Materials, Beijing, 2001, 198-203.
[58] Plokker, H.M., Khan, S.U., Alderliesten, R.C. and Benedictus, R. (2009) Fatigue crack growth in Fibre Metal Laminates under selective variable-amplitude loading. Fatigue & Fracture of Engineering Materials & Structures, 32, 233-248.
[59] Woerden, H.J.M. (1998) Variable amplitude fatigue of GLARE. Preliminary Thesis, Delft University of Technology, Delft.
[60] Khan, S.U., Alderliesten, R.C., Rans, C.D. and Benedictus, R. (2010) Application of a modified Wheeler model to predict fatigue crack growth in Fibre Metal Laminates under variable amplitude loading. Engineering Fracture Mechanics, 77, 1400-1416.
[61] Schijve, J. (1981) Some formulas for the crack opening stress level. Engineering Fracture Mechanics, 14, 461-465.
[62] Khan, S.U. (2012) Fatigue crack & delamination growth in Fibre Metal Laminates under variable amplitude loading. Ph.D. Thesis, Delft University of Technology, Delft.
[63] Khan, S.U., Alderliesten, R.C. and Benedictus, R. (2009) Delamination growth in Fibre Metal Laminates under variable amplitude loading. Composites Science and Technology, 69, 2604-2615.
[64] 吴学仁, 郭亚军 (1999) 变幅载荷下纤维金属层板的疲劳与寿命预测. 中国工程科学, 3, 35-40.
[65] Alderliesten, R.C. and Woerden, H.J.M. (2003) Load history effects during fatigue crack propagation in glare. In: Fatigue of Aeronautical Structures as an Engineering Challenge, Vol. 1, Guillaume M, Switzerland, 509-530.
[66] Khan, S.U., Alderliesten, R.C. and Benedictus, R. (2011) Delamination in Fiber Metal Laminates (GLARE) during fatigue crack growth under variable amplitude loading. International Journal of Fatigue, 33, 1292-1303.