[1]
|
Gershon, R.K. and Kondo, K. (1971) Infectious immunological tolerance. Immunology, 21, 903-914.
|
[2]
|
Sakaguchi, S. (2000) Regulatory T cells: Key controllers of immunologic self tolerance. Cell, 101, 455-458.
|
[3]
|
Khattri, R., Cox, T., Yasayko, S.A., et al. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunology, 4, 337-342.
|
[4]
|
郎涛, 吴广胜 (2008) CD4+CD25+调节性T细胞与自身免疫性疾病. 医学综述, 19, 2887-2890.
|
[5]
|
陶盛能 (2010) CD4+CD25+调节性T细胞和再生障碍性贫血之间的关系. 安徽医科大学, 安徽.
|
[6]
|
Takahashi, T., Kuniyasu, Y., Toda, M., et al. (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immu-nology, 10, 196919-196980.
|
[7]
|
Mchugh, R.S., Whitters, M.J., Piccirillo, C.A., et al. (2002) CD4+CD25+ immuno-regulatoryT cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Im-munity, 16, 311-323.
|
[8]
|
Shimizu, J., Yamazaki, S., Takahashi, T., et al. (2002) Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3, 135-142.
|
[9]
|
Ono, M., Shimizu, J., Miyachi, Y., et al. (2006) Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein (high ), Foxp3-expressing CD25+ and CD25-regulatory T cells. The Journal of Immunology, 176, 4748-4756.
|
[10]
|
Chen, X., Oppenheim, J.J., Winkler-Pickett, R.T., Ortaldo, J.R. and Howard, O.M. (2006) Glucocorticoid amplifies IL- 2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cells in vivo and enhances their capacity to suppress EAE. European Journal of Immunology, 36, 2139-2149.
|
[11]
|
Murawski, M.R., Litherland, S.A., Clare-Salzler, M.J. and Davoodi-Semiromi, A. (2006) Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: Implications for the NOD STAT5B mutation in diabetes pathogenesis. Annals of the New York Academy of Sciences, 1079, 198-204.
|
[12]
|
Zorn, E., Nelson, E.A., Mohseni, M., Porcheray, F., Kim, H., Litsa, D., et al. (2006) IL-2 regulates FOXP3 expression in human CD4+ CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood, 108, 1571-1579.
|
[13]
|
孟荔, 欧阳建 (2007) CD4+CD25+调节性T细胞与自身免疫病. 中国组织工程研究与临床康复, 33, 6676-6680.
|
[14]
|
Taylor, A., Verhagen, J., Blaser, K., Akdis, M. and Akdis, C.A. (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology, 117, 433-442.
|
[15]
|
Nakamura, K., Kitani, A. and Strober, W. (2001) Cell contact-dependent immune suppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of Experimental Medicine, 194, 629-644.
|
[16]
|
Brode, S., Raine, T., Zaccone, P. and Cooke, A. (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+ Foxp3+ regulatory T cells. The Journal of Immunology, 177, 6603-6612.
|
[17]
|
吴忆, 姜智慧, 刘松岩 (2011) CD4+CD25+调节性T细胞在糖尿病发病中作用的研究. 辽宁中医药大学学报, 6, 71-72.
|
[18]
|
张小娇, 孔璐璐 (2012) 糖尿病患者外周血Foxp3+调节性T 细胞的检测及其临床意义. 南京医科大学学报, 4, 509-513.
|
[19]
|
Petzold, C., Riewaldt, J., Watts, D., Sparwasser, T., Schallenberg, S. and Kretschmer, K. (2013) Foxp3+ regulatory T cells in mouse models of type 1 diabetes. Journal of Diabetes Research, 2013, Article ID: 940710.
|
[20]
|
Zóka, A., Barna, G., Somogyi, A., Műzes, G., Oláh, Á., Al-Aissa, Z., et al. (2014) Extension of the CD4+Foxp3+CD25−/low regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity, 19, 1-9.
|
[21]
|
Liu, M.F., Wang, C.R., Fang, L.I. and Wu, C.R. (2004) Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scandinavian Journal of Immunology, 59, 198-202.
|
[22]
|
唐蓉, 唐德, 伍昌林 (2006) SLE 患者CD4+CD25+调节性T细胞及Foxp3 基因表达的研究. 广东医学院学报, 6, 346-348.
|
[23]
|
卫红刚, 蔡蓓, 王兰兰 (2007) SLE患者外周血中Foxp3+CD4+CD25+调节性T细胞的分析. 细胞与分子免疫学杂志, 5, 432-435.
|
[24]
|
赵宏丽, 赵俊芳 (2012) 系统性红斑狼疮患者CD4+CD25+调节性T细胞及其细胞因子的改变. 中国皮肤性病学杂志, 7, 581-583.
|
[25]
|
孙保东, 蔡文虹, 洪小平, 刘冬舟, 黄勤, 谭艳红 (2013) TGFβ1和CD4+CD25+调节性T细胞表达在系统性红斑狼疮发病中的意义. 中国当代医药, 21, 4-6.
|
[26]
|
郭露露, 张缪佳, 季晓辉, 谈文峰 (2012) 系统性红斑狼疮患者外周血CD4+调节性T细胞CD25+和FoxP3+的表达及意义. 江苏医药, 22, 1307-1310.
|
[27]
|
Solomou, E.E., Rezvani, K., Mielke, S., Malide, D., Keyvanfar, K., Visconte, V., et al. (2007) Deficient CD4+CD25+ FOXP3+ T regulatory cells in acquired aplastie anemia. Blood, 110, 1603-1606.
|
[28]
|
王雪野, 韩梅 (2009) 再生障碍性贫血患者外周血CD4+CD25+调节性T细胞及Foxp3的变化及临床意义. 中国免疫学杂志, 3, 271-274.
|
[29]
|
王西阁, 王晓格 (2010) 调节性T细胞及Foxp3基因在再生障碍性贫血患儿外周血中的变化及意义. 中国当代儿科杂志, 4, 241-243.
|
[30]
|
徐金格, 陈令松 (2013) 非重型再生障碍性贫血患者外周血CD4+CD25+ FOXP3+调节性T细胞检测及临床意义.中华临床医师杂志, 8, 3609-3611.
|
[31]
|
Ehrenstein, M.R., Evans, J.G., Singh, A., Moore, S., Warnes, G., Isenberg, D.A. and Mauri, C. (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. The Journal of Experimental Medicine, 200, 277-285.
|
[32]
|
Van Amelsfort, J.M., Jacobs, K.M., Bijlsma, J.W., Lafeber, F.P. and Taams, L.S. (2004) CD4+CD25+ regulatory T cells in rheumatoid arthritis: Differences in the presence, phenotype and function between peripheral blood and sy- novial fluid. Arthritis Rheumatology, 50, 2775-2785.
|
[33]
|
焦志军, 尤海燕 (2007) 类风湿性关节炎患者CD4+CD25+ Foxp3+调节性T细胞检测及意义. 中国免疫学杂志, 10, 936-943.
|
[34]
|
Abaza, N., EL-Kabarity, R.H. and Abo-Shady, R.A. (2013) Deficient or abundant but unable to fight? Estimation of circulating FoxP3+ T regulatory cells and their counteracting FoxP3− in rheumatoid arthritis and correlation with disease activity. The Egyptian Rheumatologist, 35, 185-192.
|
[35]
|
张晓燕, 张琦 (2013) 多发性硬化患者外周血调节性T细胞功能受损. 西北国防医学杂志, 4, 334-335.
|
[36]
|
Chen, X., Winkler-Pickett, R.T., Carbonetti, N.H., Ortaldo, J.R., Oppenheim, J.J. and Howard, O.M. (2006) Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. European Journal of Immunology, 36, 671-680.
|
[37]
|
Zhang, X., Reddy, J., Ochi, H., Frenkel, D., Kuchroo, V.K. and Weiner, H.L. (2006) Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. International Immunology, 18, 495-503.
|