柱形Pt-SDB催化剂的水–氢交换高处理量工艺
High Capacity Process on Liquid Catalytic Isotopic Exchange of H2O-H2 with Pt-SDB as Cylindrical Catalyst
DOI: 10.12677/NST.2016.42007, PDF, HTML, XML, 下载: 2,008  浏览: 6,636 
作者: 赵松, 胡石林, 阮皓, 张丽:中国原子能科学研究院特种材料专项工程部,北京
关键词: 高处理量柱形Pt-SDB催化剂水–氢交换压降传质单元高度传质系数High Capacity Pt-SDB Cylindrical Catalyst H2O-H2 Exchange Pressure Drop HTU Kya
摘要: 摘要:研究了基于柱形Pt-SDB催化剂的水–氢催化交换工艺, 进行了柱形Pt-SDB催化剂的流体力学性能实验并讨论了填料规格、填料催化剂装填比、反应温度、气液比、处理量等对水–氢交换传质单元高度和传质系数的影响。结果表明,催化活性较低的柱形Pt-SDB催化剂,具有液泛气速高、持液量稳定、单位床层高度压降低等优点;柱形Pt-SDB催化剂水–氢催化交换的高处理量工艺条件为θ环填料与催化剂填装比例1:1、反应温度70℃~75℃、气液比1:1、空塔气速0.3 m/s。
Abstract: The process conditions are experimentally studied for H2O-H2 liquid catalytic isotopic exchange with Pt-SDB as hydrophobic cylindrical catalyst, and hydrodynamic experiments are conducted for obtaining the correlating expressions of pressure drop △P/Z, flooding gas velocity uF. The results indicate that the Pt-SDB cylindrical catalyst with little catalytic activity has a number of advantages, including low pressure drop, higher flooding gas velocity and stable liquid holdup. The height of transfer unit (HTU) is also changed to be higher with the increasing of the air velocity in empty tower and the packing dimension. The efficiency of catalytic exchange reaction is high with a packing ratio of 1:1 of hydrophilic packing and hydrophobic catalyst in separated layers. The HTU decreases with increasing operating temperature, but the trend is slowed down when the temperature is above 70˚C. The HTU increases with increasing hydrogen flow rate and decreases with increasing diluted heavy water flow rate. When the air velocity of empty tower is 0.3 m/s, the process capacity is higher.
文章引用:赵松, 胡石林, 阮皓, 张丽. 柱形Pt-SDB催化剂的水–氢交换高处理量工艺[J]. 核科学与技术, 2016, 4(2): 50-61. http://dx.doi.org/10.12677/NST.2016.42007

参考文献

[1] Spagnolo, D.A. and Miller, A.I. (1995) The CECE Alternative for Upgrading Detritiation in Heavy Water Nuclear Reactors and for Tritium Recovery in Fusion Reactors. Fusion Technology, 28, 748-754.
[2] Holtslander, W.J. and Harrison, T.E. (1985) Recovery and Packaging of Tritium from Canadian Heavy Water Reactor. Fusion Technology, 8, 2473-2477.
[3] Spagnolo, D.A. and Everatt, A.E. (1988) Enrichment and Volume Reduction of Tritiated Water Using Combined Electrolysis Catalytic Exchange. Fusion Technology, 14, 501-506.
[4] 李俊华, 康艺, 阮皓, 等. Pt-SDB 憎水催化剂氢–水液相催化交换工艺研究[J]. 原子能科学技术, 2002, 36(2): 125-128.
[5] Andreev, B.M., Sakharovsky, Y.A., Rozenkevich, M.B., et al. (1995) Installation for Separation of Hydrogen Isotopes by the Method of Chemical Isotopic Exchange in “Water Hydrogen” System. Fusion Technology, 28, 515-518.
[6] 贾绍义, 柴诚敬. 化工传质与分离过程[M]. 北京: 化学工业出版社, 2001.
[7] 李俊华. 氢–水液相催化交换法脱氚[J]. 原子能科学技术, 2001, 35(1): 91-96.
[8] 阮皓, 李金英, 胡石林, 张丽, 窦勤成. CECE水–氢交换工艺[J]. 原子能科学技术, 2011, 33(3): 156-161.
[9] 贾绍义, 胡辉, 李杰, 吴松海. 塑料扁环填料的流体力学及传质性能的研究[J]. 化学工业与工程, 2000, 17(4): 198-203.
[10] 王树楹. 现代填料塔技术指南[M]. 北京: 中国石化出版社, 1998.
[11] Alekseev, I.A. and Bondarenko, S.D. (2002) The CECE Experimental Industrial Plant for Reprocessing of Tritiated Water Wastes. Fusion Science and Technology, 41, 1097-1101.
[12] 阮皓, 胡石林, 胡振中, 等. 水–氢同位素液相催化交换反应过程[J]. 原子能科学技术, 2005, 39(3): 218-221.