传递性推理的神经机制研究
Review on the Neural Mechanisms of Transitive Inference
DOI: 10.12677/AP.2014.42035, PDF, HTML, 下载: 2,632  浏览: 11,289  国家自然科学基金支持
作者: 李益娟, 苗小翠, 汪孟允, 张仲明:西南大学心理学部,认知与人格教育部重点实验室,重庆
关键词: 传递性推理神经机制神经环路激活海马Transitive Inference; Neural Mechanisms; Neural Circuitry; Activation; Hippocampus
摘要: 探讨高级认知过程(如推理、问题解决等)的神经机制已经成为目前心理学研究的热点,文章回顾并总结了近年来对传递性推理的神经机制的研究进展,具体内容涉及:1) 传递性推理与非传递性推理作用脑区的差异;2) 不同项数和材料激活脑区的差异;3) 海马在传递性推理中的作用;4) 传递性推理的神经环路。立足对研究现状的逐层深入思考,文章最后对传递性推理神经机制的未来研究方向和方法进行了展望。
Abstract: Probing the neural mechanism of advanced cognitive progresses (such as inference, problem solving, etc.) has become the hot issue of current psychological research. This article reviewed the latest researches on the neural mechanisms of transitive inference: 1) transitive inference and non-transitive inference will result in different activation; 2) different material and number of item of transitive reasoning will result in different activation; 3) the role of hippocampus in the transitive inference; and 4) there is a neural circuitry of transitive inference. In the end, some frequently used methods were listed and some reflections were provided for the future.
文章引用:李益娟, 苗小翠, 汪孟允, 张仲明. 传递性推理的神经机制研究[J]. 心理学进展, 2014, 4(2): 232-238. http://dx.doi.org/10.12677/AP.2014.42035

参考文献

[1] 毕鸿燕, 方格(2001). 4-6岁幼儿空间方位传递性推理能力的发展. 心理学报, 3期, 238-243.
[2] 毕鸿燕, 方格, 翁旭初(2004). 小学儿童两维空间方位传递性推理能力的发展. 心理学报, 2期, 174-178.
[3] 李红, 林崇德(2001). 个体解决三项系列问题的心理模型. 心理学报, 6期, 518-525.
[4] 莫秀峰, 李红, 张仲明(2011). 3~5岁幼儿在视野阻隔任务中的长度传递性推理. 心理发展与教育, 3期, 225-232.
[5] 魏勇刚, 尹荣, 庞丽娟(2010). 传递性推理与儿童早期非标准测量的关系. 心理科学, 2期, 449-451.
[6] 杨娟, 邱江, 张庆林(2008). 传递性推理的认知与脑机制探讨. 心理科学, 3期, 663-666.
[7] 赵雷(2005). 工作记忆和传递性推理. 武汉: 华中科技大学硕士论文, 未出版.
[8] 赵雷, 周治金, 刘昌(2006). 工作记忆成分在传递性推理中的作用. 心理科学, 5期, 1058-1062.
[9] 张仲明, 李红(2007). 个体解决5项系列问题的复合模型研究. 心理科学, 1期, 104-107.
[10] 张凤华, 邱江, 杨群, 张庆林(2009). 传递性推理的ERP研究. 心理发展与教育, 4期, 68-74.
[11] Acuna, B.D., Eliassen, J.C., Donoghue, J.P., & Sanes, J.N. (2002). Frontal and parietal lobe activation during transitive inference in humans. Cerebral Cortex, 12, 1312-1321.
[12] Brigitte, M.W., Sophia, K., & Christian, S. (2010). Transitive inference in free-living greylag geese, Anser anser. Animal Behaviour, 79, 1277-1283.
[13] Delis, D.C., Squire, L.R., Bihrle, A., & Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test. Neuropsychologia, 30, 683-697.
[14] Denise, M.W., & Rebecca, L.G. (2013). Generalizing memories over time: Sleep and reinforcement facilitate transitive inference. Neurobiology of Learning and Memory, 100, 70-76.
[15] Dickins, D.W, Singh, K.D, Roberts, N., Burns, P., Downes, J.J., Jimmieson, P., et al. (2001). An fMRI study of stimulus equivalence. NeuroReport, 12, 405-411.
[16] Demarais, A.M., & Cohen, B.H. (1998). Evidence for image-scanning eye movements during transitive inference. Biological Psychology, 49, 229-247.
[17] Dusek, J.A., & Eichenbaum, H. (1997). The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences of the United States of America, 94, 7109-7114.
[18] Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109-120.
[19] Goel, V., Buchel, C., Frith, C., & Dolan, R.J. (2000). Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage, 12, 504-514.
[20] Goel, V., & Dolan, R.J. (2001). Functional neuroanatomy of three-term relational reasoning. Neuropsychologia, 39, 901-909.
[21] Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293-302.
[22] Heckers, S., Zalesak, M., Weiss, A.P., Ditman, T., & Titone, D. (2004). Hippocampal activation during transitive inference in humans. Hippocampus, 14, 153-162.
[23] Jennifer, D.R., Sandra, N.M., & Christina, V. (2009). Impaired relational organization of propositions, but intact transitive inference, in aging: Implications for understanding underlying neural integrity. Neuropsychologia, 47, 338-353.
[24] Johnson-Laird, P.N., Oakhill, J., & Bull, D. (1986). Children’s syllogistic reasoning. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 38, 35-58.
[25] Martin, Z., & Stephan, H. (2009). The role of the hippocampus in transitive inference. Psychiatry Research: Neuroimaging, 172, 24-30.
[26] Nagode, J.C., & Pardo, J.V. (2002). Human hippocampal activation during transitive inference. Neuroreport, 13, 939-944.
[27] Olga, F.L., & Edward, A.W. (2012). Transitive inference in pigeons: Measuring the associative values of Stimuli B and D. Behavioural Processes, 89, 244-255.
[28] Pinel, P., Dehaene, S., Rivière, D., & LebiHan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013-1026.
[29] Randall, L.W., Vinod, G., Vanessa, R., Frank, K., & Jordan, G. (2013). Transitive inference reasoning is impaired by focal lesions in parietal cortex rather than rostrolateral prefrontal cortex. Neuropsychologia, 51, 464-471.
[30] Rickard, T.C., Romero, S.G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia, 38, 325-335.
[31] Sternberg, R.J. (1980). The development of linear syllogistic reasoning. Journal of Experimental Child Psychology, 29, 342356.
[32] Titone, D., Ditman, T., Holzman, P.S., Eichenbaum, H., & Levy, D.L. (2004). Transitive inference in schizophrenia: Impairments in relational memory organization. Schizophrenia Research, 68, 235-247.
[33] Waltz, J.A., Knowlton, B.J., Holyoak, K.J., Boone, K.B., Mishkin, F.S., de Menezes Santos, M., et al. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119-125.
[34] Wharton, C.M., Grafman, J., Flitman, S.S., Hansen, E.K., Brauner, J., Marks, A., et al. (2000). Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173-197.
[35] Wynne, C.D.L., & Staddo, J.E.R. (1998). A minimal model of transitive inference. Models of action: Mechanisms for adaptive behavior. Mahwah: Lawrence Erlbaum Associates, 269-307.
[36] Yonelinas, A.P., Kroll, N.E., Quamme, J.R., et al. (2002). Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neuroscience, 5, 1236-1241.
[37] Zentall, T.R., & Sherburne, L.M. (1994). Transfer of value from s+ to sin a simultaneous discrimination. Journal of Experimental Psychology, 20, 176-183.