中国二氧化碳地质储存目标靶区选取问题研究
Study on the Problem of Target Area Selection of CO2 Geological Storage in China
DOI: 10.12677/CCRL.2014.34023, PDF, HTML, 下载: 2,739  浏览: 10,675 
作者: 范基姣, 何 锦, 郭建强, 张森琦, 贾小丰, 张 超, 刁玉杰:中国地质调查局水文地质环境地质调查中心,保定
关键词: 二氧化碳地质储存目标靶区深部咸水含水层边界条件CO2 Geological Storage Target Area Deep Saline Aquifer Boundary Conditions
摘要: 在开展我国重点地区二氧化碳地质储存适宜性调查评价过程中,调查和评价对象选取问题和目标靶区边界条件确定的问题是困惑笔者的2大问题。通过研究国际上已经开展的二氧化碳储存工程,并结合在四川盆地目标靶区选取过程中的经验,认为:我国二氧化碳地质储存目标靶区调查评价应始于三级构造单元或局部有利构造,终于封闭的咸水含水层,或者适宜储存二氧化碳的非封闭的咸水含水层内部;在调查评价过程中,应充分考虑目标靶区边界条件,即咸水含水层的边界条件和三级构造单元及局部有力构造的物理边界条件。同时,我们在选取目标靶区时,一定要考虑源–汇匹配,有利于进一步评估二氧化碳注入目标靶区后,在深部咸水含水层中的运移和对该含水层系统中其他能源的影响。文章给出了目标靶区的评价指标体系,并指出,存在明确物理边界条件的目标靶区评价对象,建议采用层次分析–综合指数法,对于大范围的区域咸水含水层评价对象,建议采用多因子空间叠加法。
Abstract: During the process of the suitability investigation and assessment of the important areas, the study and assessment object and the boundary conditions are the two problems that confuse the author. Through studying the international carbon dioxide storage projects that have been carried out, combining target selection process experience in the Sichuan Basin, we think that geological storage of carbon dioxide target investigation and evaluation should begin from three tectonic le-vels or partially favorable structures, and finish with closed saline aquifers, or suitable non-en- closed interior saline aquifer for the storage of carbon dioxide. In the course of the investigation and evaluation, we should consider objective target boundary conditions, namely, the physical boundary conditions of the saline aquifers, three tectonic levels and local favorable structure. At the same time, when we select the target, we must consider the source-sink match which is conducive to further evaluate the migration of CO2 in deep saline aquifers and the impact on other energy sources of the aquifer system. The article proposes the target evaluation index system, and points out that when a clear physical boundary condition exists, we recommend using AHP-com- prehensive index method; for large-scale regional saline aquifers evaluation, we recommend using multi-factor spatial overlay method.
文章引用:范基姣, 何锦, 郭建强, 张森琦, 贾小丰, 张超, 刁玉杰. 中国二氧化碳地质储存目标靶区选取问题研究[J]. 气候变化研究快报, 2014, 3(4): 176-184. http://dx.doi.org/10.12677/CCRL.2014.34023

参考文献

[1] Bachu, S. (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environmental Geology, 44, 277-289.
[2] Gibson-Poole, C., Svendsen, L., Underschultz, J., Watson, M., Ennis-King, J., van Ruth, P., Nelson, E., Daniel, R. and Cinar, Y. (2008) Site characterisation of a basin-scale CO2 geological storage system: Gippsland Basin, Southeast Australia. Environmental Geology, 54, 1583-1606.
[3] Det Norske Veritas (2009) CO2Qualstore: Guideline for selection and qualification of sites and projects for geological storage of CO2. Det Norske Veritas, Hovik, 77.
[4] 张森琦, 郭建强, 等 (2011) 中国二氧化碳地质储存地质基础及场地评价. 地质出版社, 北京.
[5] 孙典文 (2011) 为了经济的可持续发展——神华集团成功封存二氧化碳于千米以下地层纪实. 中国石油和化工, 8, 11-15.
[6] 范基姣, 贾小丰, 张森琦 (2011) CO2地质储存潜力与适宜性方法及初步评价. 水文地质工程地质, 6, 108-112.
[7] 范基姣, 张森琦, 郑宝锋 (2011) CO2地质储存潜力与适宜性编图方法研究. 水文地质工程地质, 4, 101-105.
[8] 郭建强, 张森琦, 刁玉杰, 等 (2011) 深部咸水层CO2地质储存工程场地选址技术方法. 吉林大学学报(地球科学版), 4, 1084-1091.
[9] 刁玉杰, 张森琦, 郭建强, 等 (2012) 深部咸水层二氧化碳地质储存场地选址储盖层评价. 岩土力学, 8.
[10] 张森琦, 郭建强, 刁玉杰, 等 (2012) 规模化深部咸水含水层CO2地质储存选址方法研究. 中国地质, 6, 1640- 1651.
[11] Baklid, A., Korbol, R. and Owren, G. (1996) Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE Annual Technical Conference and Exhibition.
[12] Nielsen, L.H. (2003) Late triassic-jurassic development of the Danish Basin and the Fennoscandian Border zone, sou- thern Scandinavia. The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 459-526.
[13] Lundin, E., Polak, S., Bøe, R., Zweigel, P. and Linderberg, E. (2005) Storage potential for CO2 in the Froan Basin area of the Trøndelag Platform, mid-Norway. NGU Report.
[14] Meyer, R., May, F., Müller, C., Geel, K. and Bernstone, C. (2008) Regional search, selection and geological characterization of a large anticlinal structure, as a candidate site for CO2 -storage in northern Germany. Environmental Geology, 54, 1607-1618.
[15] Evans, D.J, Williams, G., Vincent, C., Holloway, S. and Chadwick, R.A. (2004) An appraisal of offshore CO2 repositories for a planned CGCCS power plant in south walls. British Geological Survey Report No. CR/04/017C, British Geology Survey, Nottingham, 49 p.
[16] 李旭峰, 贾小丰, 胡丽莎, 张晓娟, 刁玉杰, 孙晟, 等 (2013) 二氧化碳地质储存示范工程成果报告.
[17] 陈学敏, 陈厚林 (1977) 重庆幅(H-48-23)1/20万区域水文地质调查报告.
[18] 谢应修 (1981) 广安幅(H-48-17)1/20万区域水文地质普查报告.
[19] 何晓东, 孔玲, 安菲菲 (2013) 有水气藏气水分布及水区能量. 天然气勘探与开发, 1, 33-35.
[20] 田冷, 何顺利, 刘胜军, 兰朝利 (2009) 广安地区须家河组气藏气水分布特征. 天然气工业, 6, 23-26.
[21] 付国明 (2013) 四川盆地二氧化碳地质储存适宜性评价. 长安大学, 西安.
[22] 中国21世纪议程管理中心 (2012) 中国地质调查局水文地质环境地质调查中心. 中国二氧化碳地质封存选址指南研究. 地质出版社, 北京.
[23] 金鑫, 王合生, 涂俊, 张子凡(2002) 用“多因子空间叠加法”评价城市区域环境综合质量. 环境监测管理与技术, 14, 24-26.
[24] 刘爱芳, 郭树荣 (2009) 多因素排序法在工业建设项目选址中的应用. 建筑管理现代化, 2, 135-137.
[25] 黄定轩, 应可福, 武振业 (2003) 基于事例的多因素重要性排序确定方法及其应用. 工业工程与管理, 3, 24-27.