基于石墨烯光机械系统的光学三极管和相干光学存贮
Optical Transistor and Coherent Optical Storage Based on Graphene Optomechanics System
DOI: 10.12677/APP.2015.510016, PDF, HTML, XML, 下载: 2,689  浏览: 8,457  国家自然科学基金支持
作者: 陈华俊*, 方贤文, 唐旭东, 缪广红:安徽理工大学理学院,安徽 淮南;朱卡的:上海交通大学物理与天文系,人工结构和量子调控重点实验室(教育部),上海
关键词: 石墨烯光机械相干光学性质光学三极管Grapheme Optomechanics Coherent Optical Properties Optical Transistor
摘要: 原子尺寸厚度的二维纳米材料——石墨烯,由于它对于研究其量子运动行为的独特性质,石墨烯也许是构成纳米机械振子的最终纳米材料。本文在红边带条件下,通过用一个强的微波泵浦场和一个弱的信号场驱动石墨烯纳米机械振子–微波腔耦合系统,理论证明了系统中的光机械诱导透明。在蓝边带条件下,通过计算信号场的透射谱,发现信号场可以实现有效地减弱和放大取决于栅极场(泵浦场)的功率强度。这样在蓝边带下石墨烯光机械系统呈现出类似一个光学三极管实现弱微波信号的放大。此外通过控制强泵浦场,石墨烯光机械系统可以实现快光和慢光效应,并且通过调节腔场与泵浦场之间的失谐能实现快光和慢光效应之间的转换。石墨烯光机械系统对于光的存储将会是一个很有希望的方案,同时对于在通讯和量子信息技术上的应用也指出了一个方向。
Abstract: Graphene, atomically thin two-dimensional nanomaterials, may be considered as the ultimate nanomaterial for fabricating nanomechanical resonator due to its unique properties for studying its quantum behavior of the motion. In this work, we theoretically demonstrate optomechanically induced transparency based on the coupled graphene nanomechanical resonator-microwave cavity system with a strong microwave pump field and a weak signal field under the condition of red sideband. At the blue sideband, the signal field can be efficiently attenuated or amplified with calculating the transmission spectrum of the signal field, depending on the power of a second “gating” (pump) field which can behave as an optical transistor to amplify a weak microwave field. In addition, the graphene optomechanics can obtain the slow and fast light effect with controlling the strong pump field, and the slow and fast light effect can be switched via adjusting the detuning between the cavity field and the pump field. This scheme may be a promising candidate for light storage and pave the way for numerous applications in telecommunication and quantum information technologies.
文章引用:陈华俊, 方贤文, 唐旭东, 缪广红, 朱卡的. 基于石墨烯光机械系统的光学三极管和相干光学存贮[J]. 应用物理, 2015, 5(10): 115-122. http://dx.doi.org/10.12677/APP.2015.510016

参考文献

[1] Song, X., Oksanen, M., Sillanpää, M.A., et al. (2011) Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout. Nano Letters, 12, 198-202.
[2] Chen, C., Lee, S., Deshpande, V.V., et al. (2013) Graphene mechanical oscillators with tunable frequency. Nature Nanotechnology, 8, 923-927.
[3] Moser, J., Güttinger, J., Eichler, A., et al. (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotechnology, 8, 493-496.
[4] Chiu, H.Y., Hung, P., Postma, H.W.C., et al. (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Letters, 8, 4342-4346.
[5] Chaste, J., Eichler, A., Moser, J., et al. (2012) A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301-304.
[6] Singh, V., Sengupta, S., Solanki, H.S., et al. (2010) Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology, 21, 165204.
[7] Aspelmeyer, M., Kippenberg, T.J. and Marquardt, F. (2014) Cavity optomechanics. Reviews of Modern Physics, 86, 1391.
[8] O’Connell, A.D., Hofheinz, M., Ansmann, M., et al. (2010) Quantum ground state and single-phonon control of a mechanical resonator, Nature, 464, 697-703.
[9] Teufel, J.D., Donner, T., Li, D., et al. (2011) Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475, 359-363.
[10] Chan, J., Alegre, T.P.M., Safavi-Naeini, A.H., et al. (2011) Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92.
[11] Barton, R.A., Storch, I.R., Adiga, V.P., et al. (2012) Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Letters, 12, 4681-4686.
[12] Weber, P., Guttinger, J., Tsioutsios, I., et al. (2014) Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Letters, 14, 2854-2860.
[13] Singh, V., Bosman, S.J., Schneider, B.H., et al. (2014) Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotechnology, 9, 820-824.
[14] Song, X., Oksanen, M., Li, J., et al. (2014) Graphene optomechanics realized at microwave frequencies. Physical Review Letters, 113, 027404.
[15] Dobrindt, J.M. and Kippenberg, T.J. (2010) Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. Physical Review Letters, 104, 033901.