沙柳纤维素纳米化及其结构测定
Nanostructures of Salix mongolica Cellulose and Structure Determination
DOI: 10.12677/BR.2016.53012, PDF, HTML, XML, 下载: 2,117  浏览: 5,464  国家自然科学基金支持
作者: 薛振华*, 尚琪冬:内蒙古农业大学,内蒙古 呼和浩特
关键词: 沙柳纳米纤维素硫酸水解晶体结构Salix mongolica Nanocellulose Sulfuric Acid Hydrolysis Crystal Structure
摘要: 本文以沙柳枝条为原料,应用硫酸水解法制备了沙柳纳米纤维素,借助现代仪器分析手段分析了沙柳纳米纤维素的结构和性能。研究结果表明,经硫酸水解处理后,沙柳纤维素不再成纤维簇而是分散成许多纤维单丝,其分子链被打断,分解温度较处理前降低,化学成分基本保持不变,纳米纤维素晶体的结晶度较原纤维有一定程度的提高。
Abstract: The preparation process of nanocellulose was introduced in this paper using Salix branches by a method of sulfuric acid hydrolysis. And then the structure and characteristics of nanocellulose were detected with a series of modern analytic methods using advanced apparatus. The experimental results show that Salix mongolica cellulose was no longer fiber clusters but dispersed into many monofilaments after sulfuric acid hydrolysis. Its molecular chains were interrupted, the de-composition temperature was lower than before treatment, chemical composition remained bas-ically and the crystallinity increased.
文章引用:薛振华, 尚琪冬. 沙柳纤维素纳米化及其结构测定[J]. 植物学研究, 2016, 5(3): 83-92. http://dx.doi.org/10.12677/BR.2016.53012

参考文献

[1] 冯利群, 高晓霞, 王喜明. 沙柳木材显微构造及其化学成份分析[J]. 内蒙古林学院学报(自然科学版), 1996, 18(1): 38-42.
[2] Wegner, T.H. and Jones, P.E. (2006) Advancing Cellulose-Based Nanotechnology. Cellulose, 13, 115-118.
http://dx.doi.org/10.1007/s10570-006-9056-1
[3] Gardner, D.J., Oporto, G.S., Mills, R. and Samird, M.A.S.A. (2008) Adhesion and Surface Issues in Cellulose and Nanocellulose. Journal of Adhesion Science and Technology, 22, 545-567.
http://dx.doi.org/10.1163/156856108X295509
[4] Sargent, J.F. (2008) The National Nanotechnology Initiative: Overview, Reauthorization, and Appropriations Issues. US:CRS Report R L 34401.
[5] 代平祥. 浅谈纳米材料的应用[J]. 大众科技, 2006, 94(8): 26,37.
[6] Iversen, T., Larsson, T., Lindström, M., et al. (2005) Nanoforest: A Nanotechnology Roadmap for the Forest Products Industry. STFI-Packforsk, No.48, Stockholm.
[7] 唐丽荣. 纳米纤维素晶体的制备、表征及应用研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2010.
[8] Chakraborty, A., Sain, M. and Kortschot, M. (2005) Cellulose Microfibrils: A Novel Method of Preparation Using High Shear Refining and Cryocrushing. Holzforschung, 59, 102-107.
http://dx.doi.org/10.1515/HF.2005.016
[9] 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007(10): 1568-1575.
[10] Gogotsi, Y. (2006) Nanotubes and Nanofibers. CRC Press, Boca Raton.
http://dx.doi.org/10.1201/9781420009385
[11] Nickerson, R.F. and Habrle, J.A. (1947) Cellulose Intercrystalline Structure. Industrial & Engineering Chemistry Research, 39, 1507-1512.
http://dx.doi.org/10.1021/ie50455a024
[12] Ranby, B.G. (1952) The Cellulose Micelles. Tappi, 35, 53-58.
[13] Bondeson, D., Mathew, A. and Oksman, K. Optimization of the Isolation of Nanocrystals from Micro-crystalline Cellulose by Acid Hydrolysis. Cellulose, 13, 171-180.
http://dx.doi.org/10.1007/s10570-006-9061-4
[14] 杨洁, 叶代勇. 纳米纤维素晶须表面接枝及其液晶性能研究进展[J]. 化工进展, 2012(9): 1990-1997.
[15] Bodin, A., Backdahl, H., Risberg, B., et al. (2007) Nano Cellulose as a Scaffold for Tissue Engineered Blood Vessels. Tissue Engineering, 13, 885-885.
[16] 蒋玲玲, 陈小泉. 纳米纤维素晶体的研究现状[J]. 纤维素科学与技术, 2008(2): 73-78.
[17] 李金玲, 周刘佳, 叶代勇. 硫酸铜助催化制备纳米纤维素晶须[J]. 精细化工, 2009, 26 (9): 844-849.
[18] 高洁, 汤烈贵. 纤维素科学[M]. 北京: 科学出版社, 1996: 50-58.
[19] 李坚. 木材波谱学[M]. 哈尔滨: 东北林业大学出版社, 2003: 104-116.
[20] 黄涛, 蒋建敏, 王金丽, 等. 菠萝叶纤维结构及热力学性能研究[J]. 上海纺织科技, 2009, 37(10): 9-12.