唾液酸转运体蛋白NanT的分子克隆,异源表达及纯化
Molecular Cloning, Heterologous Expression, and Purification of the Sialic Acid Transporter NanT
DOI: 10.12677/HJBM.2016.64004, PDF, HTML, XML, 下载: 1,785  浏览: 4,843 
作者: 黄尚谕:上海市宝山区青少年科学技术指导站,上海;上海市行知中学,上海;史青茹*:上海市宝山区青少年科学技术指导站,上海
关键词: 唾液酸转运体神经传递扎拉病Sialic Acid Transporter Neural Transmission Salla Disease
摘要: 唾液酸是一种含有九个碳的单糖的衍生物。广泛的存在于动物体的组织内。尤其是人类的大脑,含有高浓度的唾液酸。这些唾液酸被认为是神经节苷脂的传递递质,对神经传导具有重要意义。唾液酸在体内生物膜上的转运是由一种具有多个跨膜螺旋的膜蛋白NanT介导的。NanT蛋白是SLC17家族转运体蛋白的一员,它的功能丧失会导致扎拉疾病以及婴儿唾液酸积累紊乱。然而唾液酸转运体蛋白的结构以及其底物转运机制目前都是未知的。在这篇文章中,我们克隆并表达了NanT蛋白。结合亲和层析以及凝胶阻滞层析等手段,我们获得了高纯度的NanT目的蛋白。我们的结果为进一步研究NanT的结构以及其底物转运机制提供了很好的基础。
Abstract: Sialic acids are nine-carbon sugar acids, and are found widely distributed in animal tissues. In human, the brain contains high concentration of sialic acids, which are vital for neural transmis-sion. The transport of sialic acids in vivo is carried out by the multi-pass membrane protein, NanT, a membrane of the SLC17 transporter family. The loss of function of NanT will cause salla disease and infantile sialic acid storage disorder. However, the structure and mechanism of the sialic acids transporter remain unknown. In this study, we clone and express the NanT protein. Combining the affinity and size-exclusion chromatography, we obtain the high purity of the target protein. Our results provide a basis for further exploring the structure and mechanism of the sialic acids transporter, NanT.
文章引用:黄尚谕, 史青茹. 唾液酸转运体蛋白NanT的分子克隆,异源表达及纯化[J]. 生物医学, 2016, 6(4): 25-30. http://dx.doi.org/10.12677/HJBM.2016.64004

参考文献

[1] Schauer, R. (2000) Achievements and Challenges of Sialic Acid Research. Glycoconjugate Journal, 17, 485-499.
http://dx.doi.org/10.1023/A:1011062223612
[2] Varki, A. (2007) Glycan-Based Interactions Involving Vertebrate Sialic-Acid-Recognizing Proteins. Nature, 446, 1023-1029.
http://dx.doi.org/10.1038/nature05816
[3] Angata, T. and Varki, A. (2002) Chemical Diversity in the Sialic Acids and Related Alpha-Keto Acids: An Evolutionary Perspective. Chemical Reviews, 102, 439-469.
http://dx.doi.org/10.1021/cr000407m
[4] Varki, A. and Gagneux, P. (2012) Multifarious Roles of Sialic Acids in Immunity. Annals of the New York Academy of Sciences, 1253, 16-36.
http://dx.doi.org/10.1111/j.1749-6632.2012.06517.x
[5] Varki, A. (2008) Sialic Acids in Human Health and Disease. Trends in Molecular Medicine, 14, 351-360.
http://dx.doi.org/10.1016/j.molmed.2008.06.002
[6] Born, G.V. and Palinski, W. (1985) Unusually High Concentrations of Sialic Acids on the Surface of Vascular Endothelia. British Journal of Experimental Pathology, 66, 543-549.
[7] Dekan, G., Gabel, C. and Farquhar, M.G. (1991) Sulfate Contributes to the Negative Charge of Podocalyxin, the Major Sialoglycoprotein of the Glomerular Filtration Slits. Proceedings of the National Academy of Sciences of the United States of America, 88, 5398-5402.
http://dx.doi.org/10.1073/pnas.88.12.5398
[8] Gelberg, H., Healy, L., Whiteley, H., Miller, L.A. and Vimr, E. (1996) In Vivo Enzymatic Removal of Alpha 2-->6- Linked Sialic Acid from the Glomerular Filtration Barrier Results in Podocyte Charge Alteration and Glomerular Injury. Laboratory Investigation: A Journal of Technical Methods and Pathology, 74, 907-920.
[9] Weinhold, B., et al. (2005) Genetic Ablation of Polysialic Acid Causes Severe Neurodevelopmental Defects Rescued by Deletion of the Neural Cell Adhesion Molecule. The Journal of Biological Chemistry, 280, 42971-42977.
http://dx.doi.org/10.1074/jbc.M511097200
[10] Johnson, C.P., Fujimoto, I., Rutishauser, U. and Leckband, D.E. (2005) Direct Evidence That Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion. The Journal of Biological Chemistry, 280, 137-145.
http://dx.doi.org/10.1074/jbc.M410216200
[11] El Maarouf, A., Petridis, A.K. and Rutishauser, U. (2006) Use of Polysialic Acid in Repair of the Central Nervous System. Proceedings of the National Academy of Sciences of the United States of America, 103, 16989-16994.
http://dx.doi.org/10.1073/pnas.0608036103
[12] Rutishauser, U. (2008) Polysialic Acid in the Plasticity of the Developing and Adult Vertebrate Nervous System. Nature Reviews. Neuroscience, 9, 26-35.
http://dx.doi.org/10.1038/nrn2285
[13] Weigel, P.H. and Yik, J.H. (2002) Glycans as Endocytosis Signals: The Cases of the Asialoglycoprotein and Hyaluronan/Chondroitin Sulfate Receptors. Biochimica et Biophysica Acta, 1572, 341-363.
http://dx.doi.org/10.1016/S0304-4165(02)00318-5
[14] Raju, T.S., Briggs, J.B., Chamow, S.M., Winkler, M.E. and Jones, A.J. (2001) Glycoengineering of Therapeutic Glycoproteins: In Vitro Galactosylation and Sialylation of Glycoproteins with Terminal N-Acetylglucosamine and Galactose Residues. Biochemistry, 40, 8868-8876.
http://dx.doi.org/10.1021/bi010475i
[15] Pickup, J.C., et al. (1995) Serum Sialic Acid Concentration and Coronary Heart Disease in NIDDM. Diabetes Care, 18, 1100-1103.
http://dx.doi.org/10.2337/diacare.18.8.1100
[16] Crook, M.A., et al. (1994) Serum Sialic Acid, a Risk Factor for Cardiovascular Disease, Is Increased in IDDM Patients with Microalbuminuria and Clinical Proteinuria. Diabetes Care, 17, 305-310.
http://dx.doi.org/10.2337/diacare.17.4.305
[17] Ponnio, M., Alho, H., Nikkari, S.T., Olsson, U., Rydberg, U. and Sillanaukee, P. (1999) Serum Sialic Acid in a Random Sample of the General Population. Clinical Chemistry, 45, 1842-1849.
[18] Afzali, B., et al. (2003) Raised Plasma Total Sialic Acid Levels Are Markers of Cardiovascular Disease in Renal Dialysis Patients. Journal of Nephrology, 16, 540-545.
[19] Rosen, S.D. (2004) Ligands for L-Selectin: Homing, Inflammation, and beyond. Annual Review of Immunology, 22, 129-156.
http://dx.doi.org/10.1146/annurev.immunol.21.090501.080131
[20] Ley, K. (2003) The Role of Selectins in Inflammation and Disease. Trends in Molecular Medicine, 9, 263-268.
http://dx.doi.org/10.1016/S1471-4914(03)00071-6
[21] Dong, Z.M., Chapman, S.M., Brown, A.A., Frenette, P.S., Hynes, R.O. and Wagner, D.D. (1998) The Combined Role of P- and E-Selectins in Atherosclerosis. The Journal of Clinical Investigation, 102, 145-152.
http://dx.doi.org/10.1172/JCI3001
[22] Millar, J.S. (2001) The Sialylation of Plasma Lipoproteins. Atherosclerosis, 154, 1-13.
http://dx.doi.org/10.1016/S0021-9150(00)00697-3
[23] Tertov, V.V., et al. (2001) Human Plasma Trans-Sialidase Causes Atherogenic Modification of Low Density Lipopro- tein. Atherosclerosis, 159, 103-115.
http://dx.doi.org/10.1016/S0021-9150(01)00498-1
[24] Schnaar, R.L. (2004) Glycolipid-Mediated Cell-Cell Recognition in Inflammation and Nerve Regeneration. Archives of Biochemistry and Biophysics, 426, 163-172.
http://dx.doi.org/10.1016/j.abb.2004.02.019
[25] Suzuki, Y. (2005) Sialobiology of Influenza: Molecular Mechanism of Host Range Variation of Influenza Viruses. Biological & Pharmaceutical Bulletin, 28, 399-408.
http://dx.doi.org/10.1248/bpb.28.399
[26] Russell, C.J. and Webster, R.G. (2005) The Genesis of a Pandemic Influenza Virus. Cell, 123, 368-371.
http://dx.doi.org/10.1016/j.cell.2005.10.019