低浓度CO2对植物的影响研究进展
Research Progress of the Effects of Low CO2 on Plant
DOI: 10.12677/HJAS.2016.66022, PDF, HTML, XML, 下载: 2,061  浏览: 4,248  科研立项经费支持
作者: 孙玉楼, 顾爱红, 宗梦琦, 吴春霞*:山东师范大学生命科学学院,山东 济南
关键词: 生物量生长发育低CO2光合作用Biomass Growth Low CO2 Photosynthesis
摘要: CO2是植物光合作用的主要碳源。低浓度CO2能够降低植物的碳固定速率,影响植物的生长发育过程。由于C3与C4植物光合途径存在差异,所以对外界低CO2环境的应答反应不同。此外,生长环境中的其他因子如水分、温度、氮等也与低浓度CO2相互作用影响植物生长发育进程。本文从生物量及其分配、生长发育周期、气孔及光合系统,以及低CO2与其他环境因子相互作用等方面综述了低浓度CO2对植物的影响。
Abstract: Atmospheric CO2 is the main carbon source for plant photosynthesis and the fundamental sub-strate for plant growth. The carbon fixation efficiency of plant is reduced and the growth and de-velopment are affected at low CO2. The effect of low CO2 on C3 and C4 plant is different because of their distinct photosynthetic pathway. Furthermore plant growth can be affected by the interactive effects of low CO2 with other environmental factors, such as water, temperature, and nutrients. In this review, the effects of low CO2 on plant growth and development are discussed in several aspects including biomass and its distribution, growth cycle, stoma, photosynthetic system and other environmental factors.
文章引用:孙玉楼, 顾爱红, 宗梦琦, 吴春霞. 低浓度CO2对植物的影响研究进展[J]. 农业科学, 2016, 6(6): 145-152. http://dx.doi.org/10.12677/HJAS.2016.66022

参考文献

[1] Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198.
http://dx.doi.org/10.1029/1999JD900837
[2] Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840.
http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x
[3] Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106.
http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x
[4] Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28.
http://dx.doi.org/10.1007/bf00328895
[5] Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158.
http://dx.doi.org/10.1038/38229
[6] Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468
[7] Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469.
http://dx.doi.org/10.1016/b978-012614440-6/50014-8
[8] Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143
[9] Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168.
http://dx.doi.org/10.1016/S0031-0182(01)00357-1
[10] Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20.
http://dx.doi.org/10.1007/BF00328894
[11] Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x
[12] Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x
[13] Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522.
http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x
[14] Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370
[15] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988.
http://dx.doi.org/10.2307/1939421
[16] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96.
http://dx.doi.org/10.2307/2390094
[17] Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867.
http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x
[18] Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20.
http://dx.doi.org/10.1007/BF00009958
[19] Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x
[20] Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24.
http://dx.doi.org/10.1016/S1360-1385(00)01813-6
[21] Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621.
http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x
[22] Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x
[23] Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341.
http://dx.doi.org/10.1007/s004420051019
[24] Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440.
http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x
[25] Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767.
http://dx.doi.org/10.1098/rstb.2001.0963
[26] Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x
[27] Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140.
http://dx.doi.org/10.1086/513493
[28] Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x
[29] Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137.
http://dx.doi.org/10.1111/nph.13566
[30] Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
[31] Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193
[32] Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397.
http://dx.doi.org/10.1038/ncb1387
[33] Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x
[34] Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265.
http://dx.doi.org/10.1007/s00468-004-0375-2
[35] Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x
[36] Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194.
http://dx.doi.org/10.2307/1937386
[37] Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23.
http://dx.doi.org/10.1016/0169-5347(96)81060-3
[38] Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728
[39] Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239.
http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x
[40] Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192
[41] Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x
[42] Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576.
http://dx.doi.org/10.2307/2389571
[43] Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
http://dx.doi.org/10.1038/20859
[44] Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869.
http://dx.doi.org/10.1038/35038000
[45] Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x
[46] Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609
[47] Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871.
http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x
[48] Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689.
http://dx.doi.org/10.1104/pp.118.2.683
[49] Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638.
http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x
[50] Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781.
http://dx.doi.org/10.1093/jxb/39.12.1771
[51] Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139.
http://dx.doi.org/10.1093/jxb/43.8.1131
[52] Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198.
http://dx.doi.org/10.1029/1999JD900837
[53] Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840.
http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x
[54] Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106.
http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x
[55] Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28.
http://dx.doi.org/10.1007/bf00328895
[56] Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158.
http://dx.doi.org/10.1038/38229
[57] Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468
[58] Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469.
http://dx.doi.org/10.1016/b978-012614440-6/50014-8
[59] Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143
[60] Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168.
http://dx.doi.org/10.1016/S0031-0182(01)00357-1
[61] Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20.
http://dx.doi.org/10.1007/BF00328894
[62] Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x
[63] Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x
[64] Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522.
http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x
[65] Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370
[66] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988.
http://dx.doi.org/10.2307/1939421
[67] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96.
http://dx.doi.org/10.2307/2390094
[68] Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867.
http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x
[69] Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20.
http://dx.doi.org/10.1007/BF00009958
[70] Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x
[71] Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24.
http://dx.doi.org/10.1016/S1360-1385(00)01813-6
[72] Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621.
http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x
[73] Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x
[74] Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341.
http://dx.doi.org/10.1007/s004420051019
[75] Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440.
http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x
[76] Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767.
http://dx.doi.org/10.1098/rstb.2001.0963
[77] Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x
[78] Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140.
http://dx.doi.org/10.1086/513493
[79] Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x
[80] Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137.
http://dx.doi.org/10.1111/nph.13566
[81] Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
[82] Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193
[83] Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397.
http://dx.doi.org/10.1038/ncb1387
[84] Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x
[85] Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265.
http://dx.doi.org/10.1007/s00468-004-0375-2
[86] Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x
[87] Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194.
http://dx.doi.org/10.2307/1937386
[88] Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23.
http://dx.doi.org/10.1016/0169-5347(96)81060-3
[89] Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728
[90] Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239.
http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x
[91] Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192
[92] Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x
[93] Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576.
http://dx.doi.org/10.2307/2389571
[94] Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
http://dx.doi.org/10.1038/20859
[95] Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869.
http://dx.doi.org/10.1038/35038000
[96] Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x
[97] Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609
[98] Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871.
http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x
[99] Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689.
http://dx.doi.org/10.1104/pp.118.2.683
[100] Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638.
http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x
[101] Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781.
http://dx.doi.org/10.1093/jxb/39.12.1771
[102] Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139.
http://dx.doi.org/10.1093/jxb/43.8.1131
[103] Levis, S., Foley, J.A. and Pollard, D. (1999) CO2, Climate, and Vegetation Feedbacks at the Last Glacial Maximum. Journal of Geophysical Research Atmospheres, 104, 31191-31198.
http://dx.doi.org/10.1029/1999JD900837
[104] Cowling, S.A., Cox, P.M., Jones, C.D., et al. (2008) Simulated Glacial and Interglacial Vegetation across Africa: Implications for Species Phylogenies and Trans-African Migration of Plants and Animals. Global Change Biology, 14, 827-840.
http://dx.doi.org/10.1111/j.1365-2486.2007.01524.x
[105] Sage, R.F. (1995) Was Low Atmospheric CO2 during the Pleistocene a Limiting Factor for the Origin of Agriculture? Global Change Biology, 1, 93-106.
http://dx.doi.org/10.1111/j.1365-2486.1995.tb00009.x
[106] Tissue, D.T., Griffin, K.L., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. Oecologia, 101, 21-28.
http://dx.doi.org/10.1007/bf00328895
[107] Cerling, T.E., Harris, J.M., MacFadden, B.J., et al. (1997) Global Vegetation Change through the Miocene/Pliocene Boundary. Nature, 389, 153-158.
http://dx.doi.org/10.1038/38229
[108] Collatz, G.J., Berry, J.A. and Clark, J.S. (1998) Effects of Climate and Atmospheric CO2 Partial Pressure on the Global Distribution of C4 Grasses: Present, Past, and Future. Oecologia, 114, 441-454.
http://dx.doi.org/10.1007/s004420050468
[109] Cerling, T.E. (1999) Paleorecords of C4 Plants and Ecosystems. In: Sage, R.F. and Monson, R.K., Eds., C4 Plant Biology, Academic Press, USA, 445-469.
http://dx.doi.org/10.1016/b978-012614440-6/50014-8
[110] Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., et al. (2001) Climate Change as the Dominant Control on Glacial- Interglacial Variations in C3 and C4 Plant Abundance. Science, 293, 1647-1651.
http://dx.doi.org/10.1126/science.1060143
[111] Boom, A., Marchant, R., Hooghiemstra, H., et al. (2002) CO2- and Temperature-Controlled Altitudinal Shifts of C4- and C3-Dominated Grasslands Allow Reconstruction of Palaeo Atmospheric pCO2. Palaeogeography Palaeoclimatology Palaeoecology, 177, 151-168.
http://dx.doi.org/10.1016/S0031-0182(01)00357-1
[112] Dippery, J.K., Tissue, D.T., Thomas, R.B., et al. (1995) Effects of Low and Elevated CO2 on C3 and C4 Annuals. I. Growth and Biomass Allocation. Oecologia, 101, 13-20.
http://dx.doi.org/10.1007/BF00328894
[113] Allen, L.H., Bisbal, E.C., Boote, K.J., et al. (1991) Soybean Dry Matter Allocation under Subambient and Superambient Levels of Carbon Dioxide. Agronomy Journal, 83, 875-883.
http://dx.doi.org/10.2134/agronj1991.00021962008300050020x
[114] Norby, R.J. and O’neill, E.G. (1991) Leaf Area Compensation and Nutrient Interactions in CO2-Enriched Seedlings of Yellow-Poplar (Liriodendron tulipifera L.). New Phytologist, 117, 515-528.
http://dx.doi.org/10.1111/j.1469-8137.1991.tb00956.x
[115] Bowler, J.M. and Press, M.C. (1993) Growth Responses of Two Contrasting Upland Grass Species to Elevated CO2 and Nitrogen Concentration. New Phytologist, 124, 515-522.
http://dx.doi.org/10.1111/j.1469-8137.1993.tb03843.x
[116] Liu, L., Shen, F., Xin, C.P., et al. (2016) Multi-Scale Modeling of Arabidopsis thaliana Response to Different CO2 Conditions: From Gene Expression to Metabolic Flux. Journal of Integrative Plant Biology, 58, 2-11.
http://dx.doi.org/10.1111/jipb.12370
[117] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1994) Increasing CO2: Comparative Responses of the C4 Grass Schizachyrium and Grassland Invader Prosopis. Ecology, 75, 976-988.
http://dx.doi.org/10.2307/1939421
[118] Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1995) Nitrogen and Water Requirements of C3 Plants Grown at Glacial to Present Carbon Dioxide Concentrations. Functional Ecology, 9, 86-96.
http://dx.doi.org/10.2307/2390094
[119] Ward, J.K., Tissue, D.T., Thomas, R.B., et al. (1999) Comparative Responses of Model C3 and C4 Plants to Drought in Low and Elevated CO2. Global Change Biology, 5, 857-867.
http://dx.doi.org/10.1046/j.1365-2486.1999.00270.x
[120] Norby, R.J. (1994) Issues and Perspectives for Investigating Root Responses to Elevated Atmospheric Carbon Dioxide. Plant & Soil, 165, 9-20.
http://dx.doi.org/10.1007/BF00009958
[121] Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x
[122] Sage, R.F. and Coleman, J.R. (2001) Effects of Low Atmospheric CO2 on Plants: More than a Thing of the Past. Trends in Plant Science, 6, 18-24.
http://dx.doi.org/10.1016/S1360-1385(00)01813-6
[123] Lehmeier, C.A., Schäufele, R. and Schnyder, H. (2005) Allocation of Reserve-Derived and Currently Assimilated Carbon and Nitrogen in Seedlings of Helianthus annuus under Sub-Ambient and Elevated CO2 Growth Conditions. New Phytologist, 168, 613-621.
http://dx.doi.org/10.1111/j.1469-8137.2005.01531.x
[124] Ward, J.K. and Strain, B.R. (1997) Effects of Low and Elevated CO2 Partial Pressure on Growth and Reproduction of Arabidopsis thaliana from Different Elevations. Plant, Cell & Environment, 20, 254-260.
http://dx.doi.org/10.1046/j.1365-3040.1997.d01-59.x
[125] Ward, J.K., Antonovics, J., Thomas, R.B., et al. (2000) Is Atmospheric CO2 a Selective Agent on Model C3 Annuals? Oecologia, 123, 330-341.
http://dx.doi.org/10.1007/s004420051019
[126] Ward, J.K. and Kelly, J.K. (2004) Scaling up Evolutionary Responses to Elevated CO2: Lessons from Arabidopsis. Ecology Letters, 7, 427-440.
http://dx.doi.org/10.1111/j.1461-0248.2004.00589.x
[127] Putterill, J. (2001) Flowering in Time: Genes Controlling Photoperiodic Flowering in Arabidopsis. Philosophical Transactions of the Royal Society B. Biological Sciences, 356, 1761-1767.
http://dx.doi.org/10.1098/rstb.2001.0963
[128] Campbell, C.D., Sage, R.F., Kocacinar, F., et al. (2005) Estimation of the Whole-Plant CO2 Compensation Point of Tobacco (Nicotiana tabacum L.). Global Change Biology, 11, 1956-1967.
http://dx.doi.org/10.1111/j.1365-2486.2005.01045.x
[129] Tonsor, S.J. and Scheiner, S.M. (2007) Plastic Trait Integration across a CO2 Gradient in Arabidopsis thaliana. The American Naturalist, 169, E119-E140.
http://dx.doi.org/10.1086/513493
[130] Beerling, D.J. and Woodward, F.I. (1997) Changes in Land Plant Function over the Phanerozoic: Reconstructions Based on the Fossil Record. Botanical Journal of the Linnean Society, 124, 137-153.
http://dx.doi.org/10.1111/j.1095-8339.1997.tb01787.x
[131] Matrosova, A., Bogireddi, H., Mateo-Peñas, A., et al. (2015) The HT1 Protein Kinase Is Essential for Red Light- Induced Stomatal Opening and Genetically Interacts with OST1 in Red Light and CO2-Induced Stomatal Movement Responses. New Phytologist, 208, 1126-1137.
http://dx.doi.org/10.1111/nph.13566
[132] Beerling, D.J. (2005) Evolutionary Responses of Land Plants to Atmospheric CO2. In: Ehleringer, J.R., Cerling, T. and Dearing, M.D., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 114-132.
[133] Li, Y.Y., Xu, J.J., Haq, N.U., Zhang, H. and Zhu, X.-G. (2014) Was Low CO2 a Driving Force of C4 Evolution: Arabidopsis Responses to Long-Term Low CO2 Stress. Journal of Experimental Botany, 65, 3657-3667.
http://dx.doi.org/10.1093/jxb/eru193
[134] Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J.I. and Iba, K. (2006) Arabidopsis HT1 Kinase Controls Stomatal Movements in Response to CO2. Nature Cell Biology, 8, 391-397.
http://dx.doi.org/10.1038/ncb1387
[135] Maherali, H., Reid, C.D., Polley, H.W., Johnson, H.B. and Jackson, R.B. (2002) Stomatal Acclimation over a Subambient to Elevated CO2 Gradient in a C3/C4 Grassland. Plant, Cell & Environment, 25, 557-566.
http://dx.doi.org/10.1046/j.1365-3040.2002.00832.x
[136] Roth-Nebelsick, A. (2005) Reconstructing Atmospheric Carbon Dioxide with Stomata: Possibilities and Limitations of a Botanical pCO2-Sensor. Trees, 19, 251-265.
http://dx.doi.org/10.1007/s00468-004-0375-2
[137] Beerling, D.J. and Royer, D.L. (2002) Reading a CO2 Signal from Fossil Stomata. New Phytologist, 153, 387-397.
http://dx.doi.org/10.1046/j.0028-646X.2001.00335.x
[138] Garbutt, K., Williams, W.E. and Bazzaz, F.A. (1990) Analysis of the Differential Response of Five Annuals to Elevated CO2 during Growth. Ecology, 71, 1185-1194.
http://dx.doi.org/10.2307/1937386
[139] Beerling, D.J. and Woodward, F.I. (1996) Palaeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23.
http://dx.doi.org/10.1016/0169-5347(96)81060-3
[140] Sage, R.F. (1990) A Model Describing the Regulation of Ribu-lose-1,5-Bisphosphate Carboxylase, Electron Transport, and Triose Phosphate Use in Response to Light Intensity and CO2 in C3 Plants. Plant Physiology, 94, 1728-1734.
http://dx.doi.org/10.1104/pp.94.4.1728
[141] Cowling, S.A. (2001) Plant Carbon Balance, Evolutionary Innovation and Extinction in Land Plants. Global Change Biology, 7, 231-239.
http://dx.doi.org/10.1046/j.1365-2486.2001.00410.x
[142] Evans, J.R. (1989) Photosynthesis and Nitrogen Relationships in Leaves of C3 Plants. Oecologia, 78, 9-19.
http://dx.doi.org/10.1007/BF00377192
[143] Gerhart, L.M. and Ward, J.K. (2010) Plant Responses to Low CO2 of the Past. New Phytologist, 188, 674-695.
http://dx.doi.org/10.1111/j.1469-8137.2010.03441.x
[144] Overdieck, D. (1989) The Effects of Preindustrial and Predicted Future Atmospheric CO2 Concentration on Lyonia mariana L.D. Don. Functional Ecology, 3, 569-576.
http://dx.doi.org/10.2307/2389571
[145] Petit, J.R., Jouzel, J., Raynaud, D., et al. (1999) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
http://dx.doi.org/10.1038/20859
[146] Sigman, D.M. and Boyle, E.A. (2000) Glacial/Interglacial Variations in Atmospheric Carbon Dioxide. Nature, 407, 859-869.
http://dx.doi.org/10.1038/35038000
[147] Ward, J.K., Myers, D.A. and Thomas, R.B. (2008) Physiological and Growth Responses of C3 and C4 Plants to Reduced Temperature When Grown at Low CO2 of the Last Ice Age. Journal of Integrative Plant Biology, 50, 1388-1395.
http://dx.doi.org/10.1111/j.1744-7909.2008.00753.x
[148] Sage, R.F. (2002) Variation in the kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. Journal of Experimental Botany, 53, 609-620.
http://dx.doi.org/10.1093/jexbot/53.369.609
[149] Klein, D., Morcuende, R., Stitt, M. and Krapp, A. (2000) Regulation of Nitrate Reductase Expression in Leaves by Nitrate and Nitrogen Metabolism Is Completely Overridden When Sugars Fall below a Critical Level. Plant, Cell & Environment, 23, 863-871.
http://dx.doi.org/10.1046/j.1365-3040.2000.00593.x
[150] Rogers, A., Fischer, B.U., Bryant, J., et al. (1998) Acclimation of Photosynthesis to Elevated CO2 under Low-Nitrogen Nutrition Is Affected by the Capacity for Assimilate Utilization. Perennial Ryegrass under Free-Air CO2 Enrichment. Plant Physiology, 118, 683-689.
http://dx.doi.org/10.1104/pp.118.2.683
[151] Grünzweig, J.M. and Körner, C. (2000) Growth and Reproductive Responses to Elevated CO2 in Wild Cereals of the Northern Negev of Israel. Global Change Biology, 6, 631-638.
http://dx.doi.org/10.1046/j.1365-2486.2000.00346.x
[152] Woodward, F.I. and Bazzaz, F.A. (1988) The Responses of Stomatal Density to CO2 Partial Pressure. Journal of Experimental Botany, 39, 1771-1781.
http://dx.doi.org/10.1093/jxb/39.12.1771
[153] Chaves, M.M. and Pereira, J.S. (1992) Water Stress, CO2 and Climate Change. Journal of Experimental Botaty, 43, 1131-1139.
http://dx.doi.org/10.1093/jxb/43.8.1131