阿尔茨海默病外周血单核细胞CD14与小胶质细胞的关系
The Relationship between CD14 and Microglia in Peripheral Blood Mononuclear Cells in Patients with Alzheimer’s Disease
DOI: 10.12677/IJPN.2017.61001, PDF, HTML, XML, 下载: 5,744  浏览: 7,847  科研立项经费支持
作者: 赵 雪, 朱爱琴:青海省人民医院,青海 西宁
关键词: 阿尔茨海默病小胶质细胞CD14Alzheimer’s Disease Microglia CD14
摘要: 阿尔茨海默病(Alzheimer’s disease, AD)是老年人常见的一种神经退行性疾病。AD发病机制还不是很清楚,研究发现淀粉样蛋白沉积激活神经胶质细胞所导致的炎症反应是其核心病理机制。近期研究表明CD14信号传导通路及其基因多态性在小胶质细胞(Microglia, MG)激活过程中发挥着一定的作用。本文主要就近年来阿尔茨海默病人外周血单核细胞(peripheral blood mononuclear cell, PBMC)中CD14细胞与MG之间关系的研究进行综述。
Abstract: Alzheimer’s disease is a neurodegenerative disease common in older people. Alzheimer’s disease pathogenesis is not very clear; the research found that the inflammation of amyloid deposition caused by activation of glial cells is the core pathogenesis. Recent studies show that the CD14 signal transduction pathway and gene polymorphism in microglia activation plays a role in this paper research in recent years. The relationship between CD14 cells and MG in Alzheimer’s patients in peripheral blood mononuclear cells was reviewed.
文章引用:赵雪, 朱爱琴. 阿尔茨海默病外周血单核细胞CD14与小胶质细胞的关系[J]. 国际神经精神科学杂志, 2017, 6(1): 1-5. https://doi.org/10.12677/IJPN.2017.61001

参考文献

[1] Reitz, C. and Mayeux, R. (2014) Alzheimer Disease: Epidemiology, Diagnostic Criteria, Risk Factors and Biomarkers. Biochemical Pharmacology, 88, 640-651.
[2] McGeer, P.L. and McGeer, E.G. (2013) The Amyloid Cascade-Inflammatory Hypothesis of Alzheimer Disease: Implications for Therapy. Acta Neuropathologica, 126, 479-497.
https://doi.org/10.1007/s00401-013-1177-7
[3] Cagnin, A., et al. (2007) Positron Emission Tomography Imaging of Neuroinflammation. Neurotherapeutics, 4, 443- 452.
[4] Edison, P., et al. (2008) Microglia, Amyloid and Cognition in Alzheimer’s Disease: An [11C](R)PK11195-PET and [11C]PIB-PET Study. Neurobiology of Disease, 32, 412-419.
[5] Okello, A., et al. (2009) Microglia Activation and Amyloid Deposition in Mild Cognitive Impairment: A PET Study. Neurology, 72, 56-62.
https://doi.org/10.1212/01.wnl.0000338622.27876.0d
[6] Maeda, J., et al. (2007) Longitudinal, Quantitative Assessment of Amyloid, Neuro Inflammation, and Anti-Amyloid Treatment in a Living Mouse Model of Alzheimer’s Disease Enabled by Positron Emission Tomography. Journal of Neuroscience, 27, 10957-10968.
https://doi.org/10.1523/JNEUROSCI.0673-07.2007
[7] Doorduin, J., et al. (2009) [(11)C]-DPA-713 and [(18)F]-DPA-714 as New PET Tracers for TSPO: A Comparison with [(11)C]-(R)-PK11195 in a Rat Model of Herpes Encephalitis. Molecular Imaging and Biology, 11, 386-398.
https://doi.org/10.1007/s11307-009-0211-6
[8] Griga, T., Kleinw, E.J.T., et al. (2005) CD14 Expression on Monocytes and Soluble CD14 Plasma Levels in Correlation to the Promoter Polymorphism of the Endotoxin Receptor CD14 Gene in Patients with Inactive Crohn’s Disease. Hepatogastroenterology, 52, 808-811.
[9] Cao, L., Tanga, F.Y. and Deleo, J.A. (2009) The Contributing Role of CD14 in Toll-Like Receptor 4 Dependent Neuropathic Pain. Neuroscience, 158, 896-903.
[10] Fassbender, K., Walter, S., Kuhl, S., et al. (2004) The LPS Receptor (CD 14) Links Innate Immunity with Alzheimer’s Disease. The FASEB Journal, 18, 203-205.
[11] Reed-Geaghan, E.G., et al. (2009) CD14 and Toll-Like Receptors 2 and 4 Are Required for Fibrillar A β-Stimulated Microglial Activation. Journal of Neuroscience, 29, 11982.
https://doi.org/10.1523/JNEUROSCI.3158-09.2009
[12] Walter, S., et al. (2007) Role of the Toll-Like Receptor 4 in Neuroinflammation in Alzheimer’s Disease. Cellular Physiology and Biochemistry, 20, 947-956.
https://doi.org/10.1159/000110455
[13] Coracii, S., Husemann, J., Berman, J.W., et al. (2002) CD36, Aclass Bscavenger Receptor, Is Expressed on Microglia in Alzheimer’s Disease Brain Sand Can Mediate Production of Reactive Oxygen Species in Response to Be Ta-Amy- loid Fibrils. American Journal of Pathology, 160, 101.
[14] Golde, S., Chandran, S., Brown, G.C., et al. (2002) Different Pathways for iNOS-Mediated Toxicity in Vitro Dependent on Neuronalmaturation and NMDA Receptor Rexpression. Journal of Neurochemistry, 82, 269.
https://doi.org/10.1046/j.1471-4159.2002.00973.x
[15] Hubacek, J.A., PH’ha, J., Skoclova, Z., et al. (1999) C(-260)T Polymorphism in the Promoter of the CD14 Monocyte Receptor Geneas a Risk Factor for Myocardial Infaration. Circulation, 99, 3218-3220.
https://doi.org/10.1161/01.CIR.99.25.3218
[16] Liu, Y., Walter, S., Stagi, M., et al. (2005) LPS Receptor (CD14): A Receptor for Phagocytosis of Alzheimer’ Amyloid Peptide. Brain, 128, 1778-1789.
[17] Reed-Geaghan, E.G., et al. (2010) Deletion of CD14 Attenuates Alzheimer’s Disease Pathology by Influencing the Brain’s Inflammatory Milieu. Journal of Neuroscience, 30, 15369-15373.
https://doi.org/10.1523/JNEUROSCI.2637-10.2010
[18] Tahara, K., et al. (2006) Role of Toll-Like Receptor Signalling in Aβ Uptake and Clearance. Brain, 129, 3006-3019.
https://doi.org/10.1093/brain/awl249
[19] Hickman, S.E., et al. (2008) Microglial Dysfunction and Defective Beta Amyloid Clearance Pathways in Aging Alzheimer’s Disease Mice. Journal of Neuroscience, 28, 8354-8360.
https://doi.org/10.1523/JNEUROSCI.0616-08.2008
[20] Zhang, W.,Wang, L.Z.,Yu, J., et al. (2012) Increased Expressions of TLR2 and TLR4 on Peripheral Blood Mononuclear Cells from Patients with Alzheimer’s Disease. Journal of the Neurological Sciences, 315, 67-71.
[21] Wu, Z., Zhu, A., Takayama, F., Okada, R., Liu, Y., Harada, Y., Wu, S. and Nakanishi, H. (2013) Brazilian Green Propolis Suppresses the Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 906726.
[22] Herber, D.L., et al. (2006) Diverse Microglial Responses after Intrahippocampal Administration of Lipopolysaccharide. Glia, 53, 382-391.
https://doi.org/10.1002/glia.20272
[23] Quinn, J., et al. (2003) Inflammation and Cerebral Amyloidosis Are Disconnected in an Animal Model of Alzheimer’s Disease. Journal of Neuroimmunology, 137, 32-41.
[24] Mawuenyega, K.G., Sigurdson, W., Ovod, V., et al. (2010) Decreased Clearance of CNS Beta-Amyliod in Alzheimer’s Disease. Science, 330, 1774.
https://doi.org/10.1126/science.1197623
[25] Minogue, A.M., Jones, R.S., Kelly, R.J., et al. (2014) Age-Associated Dysregulation of Microglial Activation Is Coupled with Enhanced Blood-Brain Barrier Permeability and Pathology in APP/PS1 Mice. Neurobiology of Aging, 35, 1442-1452.
[26] Michaud, J.P., Halle, M., Lampron, A., et al. (2013) Toll-Like Receptor 4 Stimulation with the Detoxified Ligand Monophosphoryl Lipid A Improves Alzheimer’s Disease-Related Pathology. PNAS, 110, 1941-1946.
https://doi.org/10.1073/pnas.1215165110