碳纳米管增强聚合物复合材料的合成及应用进展
The Research Advances on Carbon Nanotubes/Polymer Nanocomposites
DOI: 10.12677/AMC.2017.53009, PDF, HTML, XML, 下载: 2,150  浏览: 5,685  国家自然科学基金支持
作者: 晁楠楠, 付 饶, 孙昌梅*, 曲荣君, 张 盈:鲁东大学化学与材料科学学院,山东 烟台
关键词: 碳纳米管聚合物纳米复合材料力学性能Carbon Nanotubes Polymer Nanocomposites Mechanical Property
摘要: 碳纳米管由于具有很大的长径比和比表面积,是理想的增强材料。本文主要综述了近年来碳纳米管增强聚合物复合材料的研究进展,所增强的聚合物主要包括聚氯乙烯、聚乙烯醇、聚砜和聚甲基丙烯酸甲酯。对复合材料的制备方法、应用及所得材料的力学性能、热稳定性、导电性等各方面性能进行了总结。
Abstract: Carbon nanotubes are ideal reinforcing materials due to their large aspect ratio and specific sur-face area. The research advances on carbon nanotubes/polymer nanocomposites in recent years have been reviewed in this paper. The reinforced polymers mainly included polyvinyl chloride, polyvinyl alcohol, polysulfone and polymethyl methacrylate. The preparation methods, applications and mechanical properties, thermal stability and electrical conductivity of the composites were summarized.
文章引用:晁楠楠, 付饶, 孙昌梅, 曲荣君, 张盈. 碳纳米管增强聚合物复合材料的合成及应用进展[J]. 材料化学前沿, 2017, 5(3): 70-79. https://doi.org/10.12677/AMC.2017.53009

参考文献

[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[2] Endo, M., Takeuchi, K., Kobori, K., et al. (1995) Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon Fibers. Carbon, 33, 873-881.
https://doi.org/10.1016/0008-6223(95)00016-7
[3] Jindal, P. and Jindal, V.K. (2005) Strains in Axial and Lateral Directions in Carbon Nanotubes. Journal of Computational & Theoretical Nanoscience, 3, 127-134.
[4] Oliva-Avilés, A.I., Avilés, F. and Sosa, V. (2011) Electrical and Piezoresistive Properties of Multi-Walled Carbon Nanotube/Polymer Composite Films Aligned by an Electric Field. Carbon, 49, 2989-2997.
https://doi.org/10.1016/j.carbon.2011.03.017
[5] Punetha, V.D., Rana, S., Yoo, H.J., et al. (2016) Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study between CNT and Graphene. Progress in Polymer Science, 67, 1-47.
https://doi.org/10.1016/j.progpolymsci.2016.12.010
[6] Mirfakhrai, T., Oh, J., Kozlov, M., et al. (2007) Electrochemical Actuation of Carbon Nanotube Yarns. Smart Materials & Structures, 16, S243.
https://doi.org/10.1088/0964-1726/16/2/s07
[7] 吴崇浩, 王世敏. 纳米微粒表面修饰的研究进展[J]. 化工新型材料, 2002, 30(7): 1-5.
[8] Zhu, Y., Du, Z., Li, H., et al. (2011) Preparation and Crystallization Behavior of Multiwalled Carbon Nanotubes/Poly(Vinyl Alcohol) Nanocomposites. Polymer Engineering & Science, 51, 1770-1779.
https://doi.org/10.1002/pen.21964
[9] Gilbert, A.C.C., Derail, C., Bounia, N.E.E., et al. (2011) Unexpected Behaviour of Multi-walled Carbon Nanotubes During In Situ Polymerization Process: When Carbon Nanotubes Act as Initiators and Control Agents for Radical Polymerization. Polymer Chemistry, 3, 415-420.
[10] 赵德仁. 高聚物合成工艺学[M]. 第2版. 北京: 化学工业出版社, 1997: 152-156.
[11] 李德华. 我国聚氯乙烯的生产及市场[J]. 中国塑料, 1996, 10(5): 1-10.
[12] 赵方波, 邱峰, 张晓辉, 等. 纳米管/聚氯乙烯共混膜制备及其表征[J]. 哈尔滨工程大学学报(英文版), 2012, 33(2): 244-248.
[13] 吴浩, 牛晓君, 王彩虹, 等. 多壁碳纳米管序列修饰聚氯乙烯超滤膜的制备及性能研究[J]. 环境科学学报, 2016, 36(6): 2013-2019.
[14] Rajabi, Z., Moghadassi, A.R., Hosseini, S.M., et al. (2013) Preparation and Characterization of Polyvinylchloride Based Mixed Matrix Membrane Filled with Multiwalled Carbon Nanotubes for Carbon Dioxide Separation. Journal of Industrial & Engineering Chemistry, 19, 347-352.
https://doi.org/10.1016/j.jiec.2012.08.023
[15] Vasanthkumar, M.S., Bhatia, R., Arya, V.P., et al. (2014) Characterization, Charge Transport and Magnetic Properties of Multi-Walled Carbon Nanotube-Polyvinyl Chloride Nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 56, 10-16.
https://doi.org/10.1016/j.physe.2013.08.010
[16] Lei, S.X. and Cheng, X.U. (2013) Electrical Property of MWNTs/PS-PVC Composites. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 30, 7-12.
[17] 王俊, 何璟, 刘凯, 等. PVC/碳纳米管复合材料的制备[J]. 合成树脂及塑料, 2013(2): 13-16.
[18] 北京有机化工研究所. 聚乙烯醇的性质与应用[M]. 北京: 纺织工业出版社, 1979: 187-190.
[19] Kim, D.S., Park, H.B. and Rahim, J.W. (2004) Preparation and Characterization of Cross-Linked PVA/SiO2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications. Journal of Membrane Science, 240, 37-48.
https://doi.org/10.1016/j.memsci.2004.04.010
[20] 雷春堂, 潘晓勇, 姚国红, 王炼, 周刚, 王琪, 李莉, 陈宁. 水溶性聚乙烯醇的研究进展[J]. 塑料工业, 2011, 39(2): 10-13.
[21] Li, C.F., Shao, H.Q. and Zhong, S.H. (2004) Preparation Technology of Organic-Inorganic Hybrid Membrane. Progress in Chemistry-Beijing, 16, 83-89.
[22] Mallakpour, S., Abdolmaleki, A. and Borandeh, S. (2014) l-Phenylalanine Amino Acid Functionalized Multi Walled Carbon Nanotube (MWCNT) as a Reinforced Filler for Improving Mechanical and Morphological Properties of Poly(vinyl alcohol)/MWCNT Composite. Progress in Organic Coatings, 77, 1966-1971.
[23] Fan, J., Wang, J., Shi, Z., et al. (2013) Kevlar Nanofiber-Functionalized Multiwalled Carbon Nanotubes for Polymer Reinforcement. Materials Chemistry & Physics, 141, 861-868.
https://doi.org/10.1016/j.matchemphys.2013.06.015
[24] 王旭东, 张丽园, 王传虎, 等. 高分散性碳纳米管/聚乙烯醇纳米复合材料的制备及其性能研究[J]. 淮北师范大学学报: 自然科学版, 2016, 37(4): 65-68.
[25] 于海容, 王宗花, 张菲菲, 等. 聚乙烯醇/碳纳米管复合超滤膜的制备及应用研究[J]. 工程塑料应用, 2011, 39(9): 59-63.
[26] Beenish, I. and Asiri, A.M. (2017) Electrospun Polyaniline/Polyvinyl Alcohol/Multiwalled Carbon Nanotubes Nanofibers as Promising Bioanode Material for Biofuel Cells. Journal of Electroanalytical Chemistry, 789, 181-187.
https://doi.org/10.1016/j.jelechem.2017.02.025
[27] Yun, S., Im, H., Heo, Y., et al. (2011) Crosslinked Sulfonated Poly(vinyl alcohol)/Sulfonated Multi-walled Carbon Nanotubes Nanocomposite Membranes for Direct Methanol Fuel Cells. Journal of Membrane Science, 380, 208-215.
https://doi.org/10.1016/j.memsci.2011.07.010
[28] Phelane, L., Muya, F.N., Richards, H.L., et al. (2014) Polysulfone Nanocomposite Membranes with Improved Hydrophilicity. Electrochimica Acta, 128, 326-335.
https://doi.org/10.1016/j.electacta.2013.11.156
[29] Chen, Y.F., Wang, T., Zhang, Y.T., et al. (2012) Preparation and Antibacterial Property of Halloysite Nanotube Loaded with Silver Nanoparticles/Polyethersulfone Hybrid Ultrafiltration Membrane. CIESC Journal, 63, 1922-1928.
[30] Gijsbertsen-Abrahamse, A.J., Cornelissen, E.R. and Hofman, J.A.M.H. (2006) Fiber Failure Frequency and Causes of Hollow Fiber Integrity Loss. Desalination, 194, 251-258.
[31] Childress, A.E., Le-Clech, P., Daugherty, J.L., et al. (2005) Mechanical Analysis of Hollow Fiber Membrane Integrity in Water Reuse Applications. Desalination, 180, 5-14.
[32] Tsai, H.A., Huang, D.H., Ruohchyu, R.A., et al. (2001) Mechanical Properties of Asymmetric Polysulfone Membranes Containing Surfactant as Additives. Industrial & Engineering Chemistry Research, 40, 5917-5922.
https://doi.org/10.1021/ie010026e
[33] Moghimifar, V., Livari, A.E., Raisi, A., et al. (2015) Enhancing the Antifouling Property of Polyethersulfone Ultrafiltration Membranes Using NaX Zeolite and Titanium Oxide Nanoparticles. Rsc Advances, 5, 55964-55976.
https://doi.org/10.1039/C5RA06986F
[34] Xie, P., De Lannoy, C.F., Ma, J., et al. (2016) Improved Chlorine Tolerance of a Polyvinyl Pyrrolidone-Polysulfone Membrane Enabled by Carboxylated Carbon Nanotubes. Water Research, 104, 497-506.
[35] Xu, L., He, J., Yu, Y., et al. (2017) Effect of CNT Content on Physicochemical Properties and Performance of CNT Composite Polysulfone Membranes. Chemical Engineering Research & Design, 121, 92-98.
[36] Khalid, A., Ibrahim, A., Al-Hamouz, O.C.S., et al. (2016) Fabrication of Polysulfone Nanocomposite Membranes with Silver-Doped Carbon Nanotubes and Their Antifouling Performance. Journal of Applied Polymer Science, 134, 44688- 44700.
[37] Shah, P. and Murthy, C.N. (2013) Studies on the Porosity Control of MWCNT/Polysulfone Composite Membrane and Its Effect on Metal Removal. Journal of Membrane Science, 437, 90-98.
https://doi.org/10.1016/j.memsci.2013.02.042
[38] 郭瑞乾, 张萌, 罗居杰, 等. 酸化多壁碳纳米管/含氟聚砜复合膜的制备及其对CO2/CH4分离性能研究[J]. 化工新型材料, 2017(1): 79-82.
[39] Ruoff, R.S., Dong, Q. and Liu, W.K. (2003) Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements. Comptes Rendus Physique, 4, 993-1008.
[40] Sears, A. and Batra, R.C. (2004) Macroscopic Properties of Carbon Nanotubes from Molecular-Mechanics Simulations. Physical Review B, 69, 1681-1685.
https://doi.org/10.1103/PhysRevB.69.235406
[41] Zeng, C., Hossieny, N., Zhang, C., et al. (2013) Morphology and Tensile Properties of PMMA Crbon Nanotubes Nanocomposites and Nanocomposites Foams. Composites Science & Technology, 82, 29-37.
[42] Makireddi, S., Shivaprasad, S., Kosuri, G., et al. (2015) Electro-Elastic and Piezoresistive Behavior of Flexible MWCNT/PMMA Nanocomposite Films Prepared by Solvent Casting Method for Structural Health Monitoring Applications. Composites Science & Technology, 118, 101-107.
https://doi.org/10.1016/j.compscitech.2015.08.014
[43] Jindal, P., Sain, M. and Kumar, N. (2015) Mechanical Characterization of PMMA/MWCNT Composites under Static and Dynamic Loading Conditions. In: Swadesh, K. and Singh., Ed., Proceedings of International Conference on Materials Processing and Characterization Mechanical. Elsevier Sci Ltd, Hyderabad, 1364-1372.
[44] Banks-Sills, L., Shiber, D.G., Fourman, V., et al. (2016) Experimental Determination of Mechanical Properties of PMMA Reinforced with Functionalized CNTs. Composites Part B Engineering, 95, 335-345.
[45] Ryu, S.H., Cho, H.B., Moon, J.W., et al. (2016) Highly Conductive Polymethly(Methacrylate)/Multi-Wall Carbon Nanotube Composites by Modeling a Three-Dimensional Percolated Microstructure. Composites Part A, 91, 133-139.
https://doi.org/10.1016/j.compositesa.2016.10.002
[46] Benoit, J.M., Corraze, B., Lefrant, S., et al. (2001) Transport Properties of PMMA-Carbon Nanotubes Composites. Synthetic Metals, 121, 1215-1216.
[47] Barraza, H.J., Pompeo, F., And, E.A.O., et al. (2002) SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization. Nano Letters, 2, 797-802.
https://doi.org/10.1021/nl0256208
[48] Pandis, C., Pissis, P., Pionteck, J., et al. (2011) Highly Conducting Poly(Methyl Methacrylate)/Carbon Nanotubes Composites: Investigation on Their Thermal, Dynamic-Mechanical, Electrical and Dielectric Properties. Composites Science & Technology, 71, 854-862.
https://doi.org/10.1016/j.compscitech.2011.01.029
[49] Zhang, K. and Choi, H.J. (2015) Fabrication and Viscoelastic Characteristics of Amino-Functionalized Multi-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Nanocomposites. Composite Structures, 125, 170-175.
https://doi.org/10.1016/j.compstruct.2015.02.023
[50] Pantoja-Castro, M.A., Pérez-Robles, J.F., González-Rodríguez, H., et al. (2013) Synthesis and Investigation of PMMA Films with Homogeneously Dispersed Multiwalled Carbon Nanotubes. Materials Chemistry & Physics, 140, 458-464.
https://doi.org/10.1016/j.matchemphys.2013.03.037
[51] Mammeri, F., Teyssandier, J., Darche-Dugaret, C., et al. (2014) Carbon Nanotube-Poly(Methyl Methacrylate) Hybrid Films: Preparation Using Diazonium Salt Chemistry and Mechanical Properties. Journal of Colloid & Interface Science, 433, 115-122.
https://doi.org/10.1016/j.jcis.2014.07.023
[52] Zanotto, A., Spinella, E., Luyt, A.S., et al. (2013) Improvement of Interaction in and Properties of PMMA-MWNT Nanocomposites; Through Microwave Assisted Acid Treatment of MWNT. European Polymer Journal, 49, 61-69.
https://doi.org/10.1016/j.eurpolymj.2012.10.030