南方电网在地震灾害下的弹性评估与改进
Resilience Assessment and Enhancement of China Southern Power Grid under Seismic Hazards
DOI: 10.12677/MOS.2017.63019, PDF, HTML, XML, 下载: 1,737  浏览: 3,635 
作者: 孙江玉:南方电网超高压输电公司曲靖局,云南 曲靖;王磊*, 覃兆宇, 武永超, 李敏:国网电力科学研究院武汉南瑞有限责任公司,湖北 武汉;刘创:华中科技大学自动化学院,湖北 武汉
关键词: 电网地震灾害灾后恢复弹性评估弹性改进Power Grid Seismic Hazards Post-Disaster Restoration Resilience Assessment Resilience Enhancement
摘要: 电网的安全稳定运行对于经济繁荣,国家安全和公共卫生安全至关重要。然而在地震多发地区,高烈度地震的发生可能同时造成电网中的大量设施元件损坏,并导致电网内部和依赖电力供应的基础设施系统发生级联故障。因此,电网的弹性对于确保电力快速恢复和保障受灾人民电力需求至关重要。本文介绍了一种概率性的建模方法以对当前电网的弹性进行量化评估。这种方法包括地震情形生成模型,元件脆弱性模型,电网功能变化模型和元件恢复模型。综合这四个模型可以量化电网的弹性。本文应用上述方法对中国南方电网的弹性进行了评估,并提出了弹性策略以改进电网弹性。
Abstract: Safe and stable operation of electric power grids is critical to economic prosperity, national security, public health and safety. However, in earthquake-prone areas, a severe earthquake may si-multaneously cause extensive component failures in a power grid and lead to cascading failures within it and across other power-dependent utility systems. Hence, the seismic resilience of power systems is crucial to ensure their rapid recovery and support the needs of the population in disaster areas. This paper introduces a probabilistic modeling approach for quantifying the seismic re-silience of contemporary electric power grids. This approach includes an earthquake scenario generation model, component fragility models, a power grid performance model, and a system restoration model. These coupled four models enable quantifying seismic resilience. This paper applies the proposed approach to the seismic resilience assessment of the China Southern Power Grid, and several resilience strategies have been introduced to display how seismic resilience can be improved.
文章引用:孙江玉, 王磊, 覃兆宇, 武永超, 李敏, 刘创. 南方电网在地震灾害下的弹性评估与改进[J]. 建模与仿真, 2017, 6(3): 159-169. https://doi.org/10.12677/MOS.2017.63019

参考文献

[1] 梁志峰, 葛睿, 董昱, 等. 印度“7.30”、“7.31”大停电事故分析及对我国电网调度运行工作的启示[J]. 电网技术, 2013, 37(7): 1841-1848.
[2] 孙建锋, 葛睿, 郑力, 等. 2010年国家电网安全运行情况分析[J]. 中国电力, 2011, 44(5): 1-4.
[3] 刘爱文, 帅向华, 吕红山, 等. 鲁甸地震生命线工程震害特点及应急抢修[J]. 震灾防御技术, 2014, 9(3): 359-367.
[4] 张子引, 赵彪, 曹伟炜, 等. 四川汶川8.0级地震电网受灾情况调研与初步分析[J]. 电力技术经济, 2008, 20(4): 1- 4.
[5] 王如祥. “5.3”包头地震中的电网问题[J]. 电网技术, 1997(4): 52-53.
[6] 杨少勇, 赵建国. 电力系统地震灾害预防技术综述[J]. 电网技术, 2010, 34(321): 57-63.
[7] Poljansek, K., Bono, F. and Gutierrez, E. (2012) Seismic Risk Assessment of Interdependent Critical Infra-structure Systems: The Case of European Gas and Electricity Networks. Earthquake Engineering and Structural Dynamics, 41, 61-79.
https://doi.org/10.1002/eqe.1118
[8] Ang, H.S., Pires, J.A. and Villaverde, R. (1996) A Model for the Seismic Reliability Assessment of Electric Power Transmission Systems. Reliability Engineering & System Safety, 51, 7-22.
[9] Vanzi, I. (1996) Seismic Reliability of Electric Power Networks: Methodology and Application. Structural Safety, 18, 311-327.
[10] Zhigang, W.U., Chang, L. and Shi, S. (2006) Reliability Analysis of Power Systems under Disaster Impacts.
[11] Raschke, M., Bilis, E. and Kröger, W. (2011) Vulnerability of the Swiss Electric Power Transmission Grid against Natural Hazards. International Conference on Applications of Statistics and Probability in Civil Engineering. 11th International Conference on Applications of Statistics and Probability in Civil Engineering, 1407-1414.
https://doi.org/10.1201/b11332-211
[12] Cavalieri, F., Franchin, P., Cortés, J.A.M.B., et al. (2014) Models for Seismic Vulne-rability Analysis of Power Networks: Comparative Assessment. Computer-Aided Civil and Infrastructure Engineering, 29, 590-607.
[13] Faturechi, R. and Miller-Hooks, E. (2015) Measuring the Performance of Transportation Infrastructure Systems in Disasters: A Comprehensive Review. Journal of Infrastructure Systems, 21, Article ID: 04014025.
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000212
[14] Shinozuka, M., Dong, X., Chen, T.C., et al. (2007) Seismic Per-formance of Electric Transmission Network under Component Failures. Earthquake Engineering & Structural Dynamics, 36, 227-244.
https://doi.org/10.1002/eqe.627
[15] Espinoza, S., Panteli, M., Mancarella, P., et al. (2016) Multi-Phase Assessment and Adaptation of Power Systems Resilience to Natural Hazards. Electric Power Systems Research, 136, 352-361.
https://doi.org/10.1016/j.epsr.2016.03.019
[16] Ouyang, M. and Dueñas-Osorio, L. (2014) Multi-Dimensional Hurricane Resi-lience Assessment of Electric Power Systems. Structural Safety, 48, 15-24.
https://doi.org/10.1016/j.strusafe.2014.01.001
[17] 尚春. 特高压输电技术在南方电网的发展与应用[J]. 高电压技术, 2006, 32(1): 35-37.
[18] Gutenberg, B. and Richter, C.F. (1944) Frequency of Earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188.
[19] Crowley, H. and Bommer, J.J. (2006) Modelling Seismic Hazard in Earthquake Loss Models with Spatially Distributed Exposure. Bulletin of Earthquake Engineering, 4, 249-273.
https://doi.org/10.1007/s10518-006-9009-y
[20] Toro, G.R., Abrahamson, N.A. and Schneider, J.F. (1997) Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties. Seismological Research Letters, 68, 41-57.
https://doi.org/10.1785/gssrl.68.1.41
[21] Adachi, T. and Ellingwood, B.R. (2010) Comparative Assessment of Civil Infra-structure Network Performance under Probabilistic and Scenario Earthquakes. Journal of Infrastructure Systems, 16, 1-10.
https://doi.org/10.1061/(ASCE)1076-0342(2010)16:1(1)
[22] National Institute of Standards and Technology (2010) White paper: Energy Technologies to Enable a Smart Grid. https://www.nist.gov/sites/default/files/documents/2017/05/09/energy_wp_10_28_10.pdf