几种根际微生物的时空分布的初步探究
The Research on the Temporal and Spatial Distribution of Several Rhizosphere Microorganisms
DOI: 10.12677/AMB.2017.63008, PDF, HTML, XML, 下载: 1,639  浏览: 3,910 
作者: 严 畅, 曹安康, 邢 辉*:南京师范大学附属中学,江苏 南京
关键词: 根际微生物时空分布Rhizosphere Microorganisms Spatiotemporal Distribution
摘要: 根际微生物的活动在植物的根际营养中起着分解有机物、释放与贮蓄养分的积极作用。根际促生微生物可以通过影响植物根系形态及生理特征而影响植物对养分的吸收,根际生防微生物通过产生一些抗菌物质抑制病原菌在植物根际的生殖和发展。然而,由于土壤中微生物个体微小,数量多,分离和鉴定困难,土壤环境条件复杂等原因,限制了人们对根际微生物与植被相互关系的认知。因此,本研究选择五种具有代表性的植物,在不同季节取其根际土中的微生物置于酵母膏,琼脂,PDA,高氏一号四种培养基培养,运用菌落计数研究了同种植物微生物量随季节变化的规律及不同植物微生物类群结构的异同,试图解释根际微生物数量和结构与植被和季节的相互关系。
Abstract: Rhizosphere microorganisms play an active role in the storage and release of nutrients and the decomposition of organic matter in the rhizosphere of plants. Rhizosphere microorganisms can affect plant growth and nutrient uptake by affecting the morphology and physiological characte-ristics of plant roots, and anti-microbial particles produced by some rhizosphere microorganisms can also inhibit the reproductive development of some pathogen in plant rhizospheres. However, soil microorganisms are small, large in number, difficult in isolation and identification, and complicated in soil environment conditions, which restrict the understanding of the relationship between rhizosphere microorganisms and vegetation. Therefore, in this study, five representative plants were selected and the rhizosphere soil extracts were cultivated into four different mediums, including yeast extract, pure agar, PDA, and Gause’s No.1 medium. Then, seasonal changes of biomass in each particular plant were studied by colony counting, and the similarities and differences between different plants’ microbial community structures were analyzed, trying to explain the correlation between rhizosphere microorganism number, community structure and plant types as well as environmental factors.
文章引用:严畅, 曹安康, 邢辉. 几种根际微生物的时空分布的初步探究[J]. 微生物前沿, 2017, 6(3): 57-64. https://doi.org/10.12677/AMB.2017.63008

参考文献

[1] 张文婷, 来航线, 王延平, 等. 黄土高原不同植被坡地土壤微生物区系特征[J]. 生态学报, 2008, 28(9): 4228- 4234.
[2] Whitman, W.B., Coleman, D.C. and Wiebe, W.J. (1998) Prokaryotes: The Unseen Majority. Proceedings of the National Academy of Sciences of the United States of America, 95, 6578-6583.
[3] 张地. 辽东栎林土壤微生物群落时空分布规律研究[D]: [硕士学位论文]. 北京: 中国科学院研究生院, 2012.
[4] 胡亚林, 汪思龙. 杉木林取代天然次生阔叶林对土壤生物活性的影响[J]. 应用生态学报, 2005, 16(8): 1414.
[5] Brookes, P.C., Ocio, J.A. and Wu, J. (1990) The Soil Microbial Biomass: Its Measurement, Properties and Role in Soil Nitrogen and Carbon Dynamics Following Substrate Incorporation. Soil Microorganisms, 35, 39-51.
[6] Joshua, P.S., Jay, M.G., Joy, S.C.C., et al. (1999) Moisture Effects on Microbial Activity and Community Structure in Decomposing Birch Litter in the Alaskan Taiga. Soil Biology and Biochemistry, 31, 831-838.
https://doi.org/10.1016/S0038-0717(98)00182-5
[7] 胡婵娟, 傅伯杰, 刘国华, 靳甜甜, 刘宇. 黄土丘陵沟壑区典型人工林下土壤微生物功能多样性[J]. 生态学报, 2009, 29(2): 727-733.
[8] 涂书新, 郭智芬, 孙锦荷. 植物根系分泌物与根际营养关系评述[J]. 土壤与环境, 2000, 9(1): 64-67.
[9] 赵官成, 梁健, 淡静雅, 等. 土壤微生物与植物关系研究进展[J]. 西南林业大学学报, 2011(1): 83-88.