激光深熔焊接304不锈钢焊缝成形工艺与控制
Study on Appearance of Weld during Deep-Penetration Laser Welding of 304 Stainless Steel
DOI: 10.12677/MS.2017.78090, PDF, HTML, XML,  被引量 下载: 1,920  浏览: 3,730  国家自然科学基金支持
作者: 李时春:湖南科技大学智能制造研究院,湖南 湘潭;廖生慧:厦门金龙联合汽车工业有限公司,福建 厦门;陈根余:湖南大学机械与运载工程学院激光研究所,湖南 长沙
关键词: 激光深熔焊接“钉子头”型焊缝工艺优化活性焊接Deep-Penetration Laser Welding “Nail-Head” Shape Weld Parameter Optimization Active-Welding
摘要: 针对高功率激光深熔焊接焊304奥氏体不锈钢缝成形质量差,易形成“钉子头”焊缝特征,研究了焊接速度、离焦量、侧吹保护气喷嘴直径对焊缝几何形貌的影响,同时研究了添加活性硫粉对焊缝熔池的控制作用和对焊缝成型的影响。结果表明:随焊接速度的增加或者随着离焦量由负值变到正值,焊缝深宽比和焊缝上部熔合线与中心线夹角θ均呈现出先增大后减小的趋势,当焊接速度为25 mm/s、离焦量为−3 mm时,焊缝的深宽比和夹角θ值最大,焊缝“钉子头”特征最不明显。在前置45度角侧吹氩气保护时,选择较大的吹气喷嘴直径,可得到深宽比和夹角θ较大值,有效抑制“钉子头”焊缝特征。表面活性元素硫粉的添加,能够实现对焊接熔池的有效控制,减小焊缝表面熔宽、增加焊缝熔深,抑制“钉子头”焊缝的形成。可见优化焊接工艺参数和添加活性粉是控制“钉子头”型焊缝的有效方法。
Abstract: For the reasons that bad weld shapes were easy to form during high-power deep-penetration laser welding, and the “nail-head” weld shape could generated easily, this paper carried out the exper-iments to study the effects of weld speed, defocused distance and jet orifice diameter of shielding gas on the weld seam geometry. The effects of surface-active sulfur powder on weld formation were studied. It was found that when the welding speed increased or the defocused distance changed from negative to positive, the depth-to-width ratio and the angle θ increased first and then decreased. When the welding speed was 25 mm/s and the defocused distance was −3 mm, the depth-to-width ratio and the angle θ were the biggest and the “nail-head” characteristic of weld shape was most non-obvious. During laser welding with argon shielding gas which was set prepo-sition and with 45 degree angle, the relative big jet orifice diameter should be chosen, then the relative big depth-to-width ratio and angle θ could be obtained and the “nail-head” weld shape could be better controlled. The addition of surface-active sulfur powder during laser welding could control the molten pool behavior, reduce the weld width and increase the weld depth, and then the “nail-head” weld shape could be suppressed. Therefore, optimizing welding parameters and adding active powder were two valid means to control “nail-head” weld shape, which could be used during actual production.
文章引用:李时春, 廖生慧, 陈根余. 激光深熔焊接304不锈钢焊缝成形工艺与控制[J]. 材料科学, 2017, 7(8): 681-689. https://doi.org/10.12677/MS.2017.78090

参考文献

[1] 郭玉泉, 吴东江, 马广义, 等. 夹具拘束距离对Hastelloy C-276薄板脉冲激光焊接变形的影响[J]. 光学精密工程, 2013, 20(11): 2465-2471.
[2] 吴东江, 尹波, 周秋菊, 等. 用Nd:YAG激光焊接殷钢薄板材料[J]. 光学精密工程, 2009, 17(3): 557-562.
[3] 张林杰, 张建勋, 王蕊, 等. 侧吹气体对不锈钢薄板激光焊接焊缝成形的影响[J]. 稀有金属材料与工程, 2006, 35(A02): 39-44.
[4] Zhang, Y., Chen, G.Y., Wei, H.Y., et al. (2008) A Novel ‘‘Sandwich’’ Method for Observation of the Keyhole in Deep Penetration Laser Welding. Optics and Lasers in Engineering, 46, 133-139.
https://doi.org/10.1016/j.optlaseng.2007.08.010
[5] Rai, R., Palmer, T.A., Elmer, J.W., et al. (2009) Heat Transfer and Fluid Flow during Electron Beam Welding of 304L Stainless Steel Alloy. Welding Journal, 88, 54-61.
[6] Bachmann, M., Avilov, V., Gumenyuk, A., et al. (2013) About the Influence of a Steady Magnetic Field on Weld Pool Dynamics in Partial Penetration High Power Laser Beam Welding of Thick Aluminium Parts. International Journal of Heat and Mass Transfer, 60, 309-321.
[7] Lampa, C., Powell, J., Ivarson, A., et al. (1995) Factors Affecting the Efficncy of Laser-welding. Lasers in Engineering, 4, 73-83.
[8] Zacharia, T., David, S.A., Vitek, J.M., et al. (1989) Weld Pool Development during GTA and Laser Beam Welding of Type 304 Stainless Steel, Part II—Experimental Correlation. Welding Journal, 68, 510s-519s.
[9] Radaj, D. (2003) Welding Residual Stresses and Distortion: Calculation and Measurement. DVS-Verlag, Düsseldorf, ISBN 3-87155-791-9.
[10] 褚庆臣, 何秀丽, 虞钢, 等. 不锈钢激光搭接焊接头温度场数值模拟及分析[J]. 中国激光, 2010, 37(12): 3180-3186.
[11] 杜汉斌, 胡伦骥, 王东川, 等. 激光穿透焊温度场及流动场的数值模拟[J]. 焊接学报, 2005, 26(12):65-69.
[12] 李建强. 304不锈钢激光焊接的建模与仿真[D]: [硕士学位论文]. 天津: 天津大学, 2004.
[13] Lienert, T.J., Burgardt, P., Harada, K.L., et al. (2014) Weld Bead Center Line Shift during Laser Welding of Austenitic Stainless Steels with Different Sulfur Content. Scripta Materialia, 71, 37-40.
https://doi.org/10.1016/j.scriptamat.2013.09.029
[14] Wei, H.L., Pal, S., Manvatkar, V., et al. (2015) Asymmetry in Steel Welds with Dissimilar Amounts of Sulfur. Scripta Materialia, 108, 88-91.
https://doi.org/10.1016/j.scriptamat.2015.06.024
[15] Traidia A., Roger F., Schroeder, J., et al. (2013) On the Ef-fects of Gravity and Sulfur Content on the Weld Shape in Horizontal Narrow Gap GTAW of Stainless Steels. Journal of Materials Processing Technology, 213, 1128-1138.
https://doi.org/10.1016/j.jmatprotec.2013.01.010
[16] Mishra S., Lienert T.J., Johnson, M.Q. and DebRoy, T. (2008) An Experimental and Theoretical Study of Gas Tungsten Arc Welding of Stainless Steel Plates with Different Sulfur Concentrations. Acta Materialia, 56, 2133-2146.
https://doi.org/10.1016/j.actamat.2008.01.028
[17] Wang, Y., Shi, Q. and Tsai, H.L. (2001) Modeling of the Ef-fects of Surface Active Elements on Flow Patterns and Weld Penetration. Metallurgical and Materials Transactions B, 32, 145-161.
https://doi.org/10.1007/s11663-001-0017-7
[18] Zhao, Y.Z., LEI, Y.P., et al. (2005) Effects of Surface-Active Elements Sulfur on Flow Patterns of Welding Pool. Journal of Materials Science & Technology, 21, 408-414.