一种基于人工表面等离激元的圆极化端射天线
A Circularly Polarized End-Fire Antenna Based on Spoof Surface Plasmon Polaritons
摘要: 本文提出了一种基于人工表面等离激元的圆极化端射天线,其主要传输和辐射结构为旋转SSPPs结构,通过单极子耦合馈电。SSPPs结构中的S形单元及其依次等角度步长绕轴旋转并等间距排列实现了天线的端射和圆极化。该天线的阻抗匹配频带为2.1~2.65 GHz,在该频率范围内具有稳定的端射特性。在频率2.435~2.525 GHz范围内,其轴比小于3 dB,具有圆极化特性。
Abstract: A circularly polarized end-fire antenna applying Spoof surface plasmon polaritons is presented in this paper. The main transmission and radiation structure of the proposed antenna is the SSPPs structure, which is fed by the printed monopole. And this antenna achieves the characteristics of end-fire and circular polarization, by introducing the S-shaped units and the rotation between units. The proposed antenna operates from 2.1 GHz to 2.65 GHz, and has a good end-fire radiation pattern. Furthermore, the axial ratio (AR) less than 3 dB covers the band ranging from 2.435 GHz to 2.525 GHz, which shows the good performance of circular polarization.
文章引用:谢超, 耿军平, 王堃, 任超凡, 周晗, 程旭旭, 刘二伟, 韩家伟, 张静, 高伟男, 梁仙灵, 贺冲, 金荣洪. 一种基于人工表面等离激元的圆极化端射天线[J]. 天线学报, 2020, 9(2): 13-18. https://doi.org/10.12677/JA.2020.92002

参考文献

[1] Li, Y., Li, W., Li, S. and Jiang, T. (2012) Miniaturization Reconfigurable Wide Slot Antenna for Multi-Mode Wireless Communication Applications. IEEE Asia-Pacific Conference on Antennas and Propagation Antennas and Propagation (APCAP), Singapore, 27-29 August 2012, 225-226.
https://doi.org/10.1109/APCAP.2012.6333238
[2] Kianinejad, A., Chen, Z. and Qiu, C. (2016) Low-Loss Spoof Surface Plasmon Slow-Wave Transmission Lines with Compact Transition and High Isolation. IEEE Transactions on Microwave Theory and Techniques, 64, 3078-3086.
https://doi.org/10.1109/TMTT.2016.2604807
[3] Liu, L., et al. (2015) Dual-Band Trapping of Spoof Surface Plasmon Polaritons and Negative Group Velocity Realization through Microstrip Line with Gradient Holes. Applied Physics Letters, 107, 201602.
https://doi.org/10.1063/1.4935976
[4] Zhou, S., et al. (2018) Spoof Surface Plasmon Polaritons Power Divider with large Isolation. Scientific Reports, 8, Art. No. 5947.
https://doi.org/10.1038/s41598-018-24404-0
[5] Pan, B.C., Liao, Z., Zhao, J. and Cui, T.J. (2014) Controlling Rejections of Spoof Surface Plasmon Polaritons Using Meta-material Particles. Optics Express, 22, 13940-13950.
https://doi.org/10.1364/OE.22.013940
[6] Wang, D., Geng, J.P. and Wang, K. (2018) A High-Efficiency Broadband Omnidirectional UHF Patch Antenna Applying Surface Plas-mon Polaritons for Handheld Terminals. IEEE Antennas and Wireless Propagation Letters, 17, 283-286.
https://doi.org/10.1109/LAWP.2017.2786779
[7] Kianinejad, A., Chen, Z.N. and Qiu, C.W. (2017) A Sin-gle-Layered Spoof Plasmon Leaky Wave Antenna with Consistent Gain. IEEE Transactions on Antennas and Propa-gation, 65, 681-687.
https://doi.org/10.1109/TAP.2016.2633161
[8] Zhuang, K., Geng, J.P., Ding, Z., Zhao, X., Ma, W., Zhou, H., Xie, C., Liang, X. and Jin, R. (2019) A Compact Endfire Radiation Antenna Based on Spoof Surface Plasmon Polaritons in Wide Bandwidth. Progress in Electromagnetics Research, 79, 147-157.
https://doi.org/10.2528/PIERM18121408
[9] Kandwal, A., Zhang, Q., Tang, X.L., et al. (2017) Low-Profile Spoof Surface Plasmon Polaritons Traveling-Wave Antenna for Near-Endfire Radiation. IEEE Antennas & Wireless Propagation Letters, 1-1.