图的i-森林分解
Decomposition of Graphs into i-Forest
DOI: 10.12677/AAM.2020.911231, PDF, 下载: 545  浏览: 851 
作者: 方旭倩:浙江师范大学数学与计算机科学学院, 浙江 金华
关键词: Nash-Williams 定理强九龙树猜想i-森林图的边分解Nash-Williams Theorem Strong Nine Dragon Tree Conjecture i-Forest Edge-Decomposition of Graphs
摘要: 一个图 G 的分数荫度定义为,著名的 Nash-Williams 定理指出:当且仅当 γf (G) ≤ k 时,图 G 最多能边分解为 k 个森林。对此 强九龙树猜想断言,对千任意非负整数 k 和 d 任何分数荫度至多为的图都能边分解为 k + 1 个森林,并且存在其中一个森林,它的每个连通分支最多包含 d 条边。在本文中,我们将 τi(G) 定义为,当然,τ1(G) = γf (G)。对于整数 i ≥ 1,图 G 的 i-森林是图 G 的支撑森林,其至少包含了 i 个连通分支。而一个 i-树是指一个 i-森林恰好有 i 个连通分支。我们证明了,当 k = 1, d = 2 时,分数 i-荫度至多为的图 G 能边分解2个 i -森林并且其中一个 i-森林,它的每个连通分支最多包含 2 条边。
Abstract: The fractional arboricity of a loopless graph G is defined as . The famous Nash-Williams theorem states that that a graph G can be decomposed into at most k forests if and only if γf (G) ≤ k. The Strong Nine Dragon Tree Conjecture asserts that for any non-negative integer k and d, any graph with fractional arboricity at most decomposes into k + 1 forests with one of them consisting of trees of sizes at most d. In this paper, we define τi(G) as , here, τ1(G) = γf (G). For the integer i ≥ 1, an i-forest of a graph G is a spanning forest of G that has at least i connected components of. An i-tree means an i-forest that there are exactly i connected components. We prove that when k = 1, d = 2, a graph G with , then the graph G can be decomposed into 2 i-forests such that for one of them, each connected component contains at most 2 edges.
文章引用:方旭倩. 图的i-森林分解[J]. 应用数学进展, 2020, 9(11): 1996-2003. https://doi.org/10.12677/AAM.2020.911231

参考文献

[1] Payan, C. (1986) Graphes E´quilibr´es et Arboricit´e Rationnelle. European Journal of Combi- natorics, 7, 263-270.
https://doi.org/10.1016/S0195-6698(86)80032-4
[2] Nash-Williams, C.St.J.A. (1964) Decompositions of Finite Graphs into Forests. Journal of the London Mathematical Society, s1-39, 12.
https://doi.org/10.1112/jlms/s1-39.1.12
[3] Montassier, M., Ossona de Mendez, P., Raspaud, A. and Zhu, X. (2012) Decomposing a Graph into Forests. Journal of Combinatorial Theory, Series B, 102, 38-52.
https://doi.org/10.1016/j.jctb.2011.04.001
[4] Kim, S.-J., Kostochka, A.V., West, D.B., Wu, H.H. and Zhu, X.D. (2013) Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree. Journal of Graph Theory, 74, 369-391.
https://doi.org/10.1002/jgt.21711
[5] Jiang, H.B. and Yang, D.Q. (2017) Decomposing a Graph into Forests: The Nine Dragon Tree Conjecture Is True. Combinatorica, 37, 1125-1137.
https://doi.org/10.1007/s00493-016-3390-1
[6] Grout, L. and Moore, B. (2019) The Pseudoforest Analogue for the Strong Nine Dragon Tree Conjecture Is True. arXiv e-prints, arXiv:1905.02600
[7] Li, P. (2017) Generalizations on Decomposing a Graph into Forests or Pseudoforests. Master Thesis, Fuzhou University, Fuzhou.