考虑隔离的三维禽流感 Filippov 控制模型的研究
A Study of a Three-Dimensional Filippov Control Model for Avian Influenza Considering Isolation
DOI: 10.12677/AAM.2021.103077, PDF, 下载: 418  浏览: 524 
作者: 王敬文, 杨友苹:山东师范大学数学与统计学院, 山东 济南
关键词: Filippov系统 禽流感 阈值策略 全局稳定性Filippov System Avian Influenza Threshold Strategy Global Stability
摘要: 本文深入探究了 3 种不同控制措施对禽流感传播的综合影响, 建立了一个以捕杀受感染的禽类、隔离 (人们受到媒体宣传的影响所进行的自主隔离) 已感染的人类以及利用医疗资源进行积极治疗作为控制措施的 SI-SIR 禽流感模型. 基于阈值策略, 我们将 SI-SIR 禽流感模型扩展到一个三维的Filippov 系统, 把感染禽类以及感染人类的总和作为是否采取控制措施的参考指标: 如果总和未超过阈值 𝐼𝑇 , 则不采取任何措施; 然而, 一旦总和超过阈值 𝐼𝑇 , 则需要立即采取控制措施. 依据阈值水平 𝐼𝑇 , 模型的解最终稳定到一个地方病平衡点或者一个伪平衡点. 数值模拟表明, 一个良好的阈值策略可以有效控制禽流感的发展, 以使禽流感的发展保持在可接受或期望的水平。
Abstract: In this paper, we explore the comprehensive impact of three different control measures on the spread of avian influenza, and establish an SI-SIR avian influenza model with culling of infected birds, isolating (the autonomous isolation of people influenced by media propaganda) infected humans, and using active treatment of medical resources as control measures. Based on the threshold strategy, the SI-SIR avian influenza model is extended to a three-dimensional Filippov system. The total number of infected birds and humans is taken as the reference index of whether to take control measures: if the sum does not exceed the threshold 𝐼𝑇 , no action will be taken; however, once the sum exceeds the threshold 𝐼𝑇 , immediate control measures are required. According to the threshold level 𝐼𝑇 , the solution of the model finally stabilizes at an endemic equilibrium or a pseudo-equilibrium. The numerical simulation shows that a good threshold strategy can effectively control the development of avian influenza, so as to keep the development of avian influenza in an acceptable or desired level.
文章引用:王敬文, 杨友苹. 考虑隔离的三维禽流感 Filippov 控制模型的研究[J]. 应用数学进展, 2021, 10(3): 701-718. https://doi.org/10.12677/AAM.2021.103077

参考文献

[1] Henzler, D.J., Kradel, D.C., Davison, S., et al. (2003) Epidemiology, Production Losses, and Control Measures Associated with an Outbreak of Avian Influenza Subtype H7N2 in Pennsyl- vania (1996-98). Avian Diseases, 47, 1022-1036.
https://doi.org/10.1637/0005-2086-47.s3.1022
[2] Changwen, K., Pun, M.C.K., Wenfei, Z., et al. (2017) Human Infection with Highly Pathogenic Avian Influenza A (H7N9) Virus, China. Emerging Infectious Diseases, 23, 1332-1340.
https://doi.org/10.3201/eid2308.170600
[3] Li, Q., et al. (2014) Epidemiology of Human Infections with Avian Influenza A(H7N9) Virus in China. New England Journal of Medicine, 370, 520-532.
[4] Fung, C.H. and Wong, K. (2013) Efficient Use of Social Media during the Avian influenza A H7N9 Emergency Response. Western Pacific Surveillance and Response, 4, 1-3.
https://doi.org/10.5365/wpsar.2013.4.3.005
[5] Yu, H., Wu, J.T., Cowling, B.J., et al. (2014) Impact of Live Poultry Market Closure in Reducing Bird-to-Human Transmission of Avian Influenza A(H7N9) Virus: An Ecological Study. The Lancet, 383, 541-548.
https://doi.org/10.1016/S0140-6736(13)61904-2
[6] Yuan, J., Lau, E., Li, K., et al. (2015) Effect of Live Poultry Market Closure on Avian Influenza A(H7N9) Virus Activity in Guangzhou, China, 2014. Emerging Infectious Diseases, 21, 1784- 1793.
https://doi.org/10.3201/eid2110.150623
[7] He, Y., Liu, P., Tang, S., et al. (2014) Live Poultry Market Closure and Control of Avian Influenza A(H7N9), Shanghai, China. Emerging Infectious Diseases, 20, 1565-1566.
https://doi.org/10.3201/eid2009.131243
[8] Mu, R., Wei, A. and Yang, Y. (2019) Global Dynamics and Sliding Motion in A(H7N9) Epi- demic Models with Limited Resources and Filippov Control. Journal of Mathematical Analysis and Applications, 477, 1296-1317.
https://doi.org/10.1016/j.jmaa.2019.05.013
[9] Gao, H.-N., et al. (2013) Clinical Findings in 111 Cases of Influenza A (H7N9) Virus Infection. New England Journal of Medicine, 368, 2277-2285.
[10] Li, G.H. and Zhang, Y.X. (2017) Dynamic Behaviors of a Modified SIR Model in Epidemic Diseases Using Nonlinear Incidence and Recovery Rates. PLoS ONE, 12, e0175789.
https://doi.org/10.1371/journal.pone.0175789
[11] Shan, C. and Zhu, H. (2014) Bifurcations and Complex Dynamics of an SIR Model with the Impact of the Number of Hospital Beds. Journal of Differential Equations, 257, 1662-1688.
https://doi.org/10.1016/j.jde.2014.05.030
[12] Cauchemez, S., Donnelly, C.A., Reed, C., et al. (2009) Household Transmission of 2009 Pan- demic Influenza A (H1N1) Virus in the United States. New England Journal of Medicine, 361, 2619-2627.
https://doi.org/10.1056/NEJMoa0905498
[13] Tang, S., Xiao, Y., Yang, Y., et al. (2010) Community-Based Measures for Mitigating the 2009 H1N1 Pandemic in China. PLoS ONE, 5, e10911.
https://doi.org/10.1371/journal.pone.0010911
[14] Yang, Y. and Wang, L. (2020) Global Dynamics and Rich Sliding Motion in an Avian-Only Fil- ippov System in Combating Avian Influenza. International Journal of Bifurcation and Chaos, 30, Article ID: 2050008.
https://doi.org/10.1142/S021812742050008X
[15] Iwami, S., Takeuchi, Y. and Liu, X. (2009) Avian Flu Pandemic: Can We Prevent It? Journal of Theoretical Biology, 257, 181-190.
https://doi.org/10.1016/j.jtbi.2008.11.011
[16] Liu, S., Ruan, S. and Zhang, X. (2017) Nonlinear Dynamics of Avian Influenza Epidemic Models. Mathematical Biosciences, 283, 118-135.
https://doi.org/10.1016/j.mbs.2016.11.014
[17] 肖燕妮, 周义仓, 唐三一. 生物数学原理[M]. 西安: 西安交通大学出版社, 2012.