自噬在血液恶性肿瘤中的应用
Autophagy in Hematological Malignancies
摘要: 近年来研究表明,细胞自噬在血液系统恶性肿瘤发生、发展中起重要作用。随着自噬在血液系统疾病中的深入研究,自噬有望在提高治疗疗效,调节药物耐药性方面有重要突破。本文就自噬的机制,以及在多发性骨髓瘤、骨髓增生异常综合征与慢性髓系白血病中的作用及其对化疗的影响作一综述。
Abstract: Recent studies have shown that autophagy plays an important role in the occurrence and development of hematological malignancies. With the in-depth study of autophagy in blood system diseases, autophagy is expected to have important breakthroughs in improving therapeutic efficacy and regulating drug resistance. This article reviews the mechanism of autophagy, its role in multiple myeloma, myelodysplastic syndrome and chronic myeloid leukemia, and its effect on chemotherapy.
文章引用:许晗, 王梦莹, 姜骁娜, 冯献启. 自噬在血液恶性肿瘤中的应用[J]. 世界肿瘤研究, 2021, 11(4): 126-130. https://doi.org/10.12677/WJCR.2021.114017

1. 引言

细胞自噬通常分为巨自噬、微自噬和分子伴侣介导的自噬。巨自噬是最常见的细胞自噬类型。自噬是一种有利于生存的应激反应,例如,在营养缺乏的情况下,自噬会被激活,以确保细胞/生物体通过非必要细胞成分的循环,为新陈代谢和生存提供基本的环境。自噬还可以去除受损和潜在有害的细胞器,从而支持细胞存活。另一方面,自噬/溶酶体途径的长期过度激活可导致自噬细胞死亡 [1]。自噬是一个涉及几个关键的ATG蛋白和信号复合体的多步骤过程。ULK1是一种蛋白激酶,作为自噬的中心启动者,它被含有mTOR的mTORC1复合物抑制 [2]。启动自噬的一个重要步骤是激活ULK1,与自噬相关因子13 (ATG13)和FIP200形成复合物,并驱动自噬小体的形成。在营养充足的条件下,mTORC1磷酸化ULK1和ATG13,抑制自噬启动 [3]。饥饿时,ULK1被去磷酸化,随后ATG1和FIP200的自身磷酸化,迅速诱导自噬 [4]。

自噬不仅参与肿瘤治疗的反应,而且在癌症的发展中起着关键作用。自噬参与肿瘤的发生和发展是复杂和多方面的。有人假设 [5],在肿瘤发生的早期阶段,自噬起到了抑制肿瘤的作用,从而确保细胞存活。另一方面,有人提出 [6],自噬也可能通过促进肿瘤细胞在复制压力下的存活和适应性导致肿瘤的进展。自噬抑制剂或联合化疗药物可用于治疗血液系统恶性肿瘤。本文重点介绍自噬在多发性骨髓瘤(multiple myeloma, MM)、骨髓增生异常综合征(myelodysplastic syndrome, MDS),慢性髓系白血病(chronic myeloid leukemia, CML)中的作用。

2. 自噬与MM

MM是浆细胞产生单克隆蛋白的恶性增殖性疾病,具有高度异质性疾病。异常的免疫球蛋白会导致大量内质网定位未折叠或错误折叠蛋白,这些蛋白对浆细胞具有潜在毒性 [7]。浆细胞已经利用多种分子机制来抵消这些可用作潜在治疗靶点的有毒蛋白质,包括蛋白酶体、热休克蛋白的上调表达 [8]、自噬–溶酶体通路等。

尽管硼替佐米的治疗提高了MM患者的总体存活率,但随着时间的推移,15%~20%的高危患者对硼替佐米没有反应或对治疗产生抵抗力。因此,迫切需要开发新的治疗策略 [9]。硼替佐米,蛋白酶体抑制剂,抑制骨髓瘤细胞的增殖,诱导其凋亡,并在体内通过阻断细胞因子回路、细胞粘附和血管生成影响骨髓瘤细胞与骨髓微环境的相互作用 [10] [11]。Hamouda等人 [12] 发现热休克蛋白B8促进错误折叠蛋白的自噬去除,有助于提高骨髓瘤细胞对硼替佐米的耐药性。抗β2M单克隆抗体通过抑制自噬来克服MM中的硼替佐米耐药性。Jaganathan等人指出 [13],自噬相关因子5 (ATG5)裂解诱导骨髓瘤细胞凋亡,而其敲除消除了硼替佐米诱导的自噬体形成并降低了对硼替佐米的敏感性。根据Vogl等人的说法 [14],使用自噬抑制剂羟氯喹和蛋白酶体抑制剂硼替佐米联合治疗复发性或难治性骨髓瘤。近来有研究表明 [15],Marcks蛋白在耐药MM细胞中过表达,在Marcks抑制杀死MM细胞的同时,它也增强了支持生存的自噬途径,在Marcks抑制之后维持了生长。与Marcks抑制剂,Bortezomib和自噬抑制剂氯喹联合治疗后,耐药MM细胞系和原代MM细胞的肿瘤生长显著减少。这项研究提示Marcks抑制剂,Bortezomib和自噬抑制剂氯喹联合治疗可能为对抗侵袭性MM提供新的途径。

3. 自噬与MDS

MDS是一种克隆性造血干细胞恶性肿瘤,其特征是造血效率低下,进行性骨髓异型增生,并由于进展为急性髓系白血病(AML)而增加死亡率。尽管骨髓正常或细胞增多,大部分MDS患者仍可表现为外周血细胞减少。MDS早期细胞过度死亡和细胞分化障碍,疾病进展时异常的造血干/祖细胞表现出凋亡抵抗 [16]。

MDS患者大多数出现贫血,需要频繁输血,导致全身铁超载。具有环状铁粒幼细胞的难治性贫血通常以剪接体机制的突变为特征,也导致细胞铁过载。过量的铁驱动转录因子NF-κB的激活,促进促炎细胞因子的产生,支持肿瘤生长。铁螯合通常用于治疗输血铁过载。许多研究表明 [17] [18],铁螯合剂Deferasirox可提高一部分MDS患者的血红蛋白水平。癌细胞中的铁代谢失调,导致铁的净流入增强活性氧的产生。过量的活性氧会促进自噬,这是一种分解代谢的细胞回收途径,可清除多余和受损的细胞器以维持细胞代谢。此外,自噬相关标志物LC3B的表达与血红蛋白水平呈正相关,表明自噬可能参与MDS相关性贫血 [19]。在终末分化过程中,自噬是线粒体生理清除的重要过程。然而,自噬在移除受损和功能失调的线粒体方面也起着重要作用。线粒体缺陷和红系成熟受损是低危骨髓发育不良的重要特征。MDS红细胞在红系分化的早期阶段表现出线粒体自噬增强的特征。自噬的增强是一种细胞保护机制,可以移除有缺陷的和富含铁的线粒体,但也可能对红系分化产生影响此外,一些自噬相关基因与MDS的治疗反应和预后有关 [20]。在MDS中观察到在剪接因子U2AF35转化的细胞中,自噬相关因子7 (ATG7)的前mRNA被异常处理,导致ATG7水平降低,并导致自噬缺陷,使细胞容易发生二次突变 [21]。

5-氮杂胞苷和地西他滨是去甲基化治疗药物,因此导致DNA甲基化减少和基因表达改变,反过来可能有助于恢复正常的造血功能,目前为治疗MDS的首选 [22]。研究显示 [23],5-氮杂胞苷与羟氯喹的序贯治疗可以提高5-氮杂胞苷的疗效,为5-氮杂胞苷治疗后进展的MDS患者的个体化治疗提供了新的见解。对于5-氮杂胞苷耐药机制的研究中发现 [24],溶酶体膜蛋白LAMP2在MDS细胞中的敲除增强了对5-氮杂胞苷的耐药性,而在LAMP2缺陷的MDS细胞中的重新表达恢复了对药物的敏感性。国内研究表明 [25],高三尖杉酯碱+阿糖胞苷+粒细胞集落刺激因子联合地西他滨可能通过调控相关基因表达抑制MDS细胞增殖,诱导其凋亡自噬,机制可能与下调PI3K/AKT/mTOR活性有关。

4. 自噬与CML

CML是一种造血干细胞克隆性骨髓增生性疾病,t(9;22) (q34;q11)在染色体间相互易位,形成BCR-ABL基因融合 [26]。BCR-ABL融合蛋白具有结构性酪氨酸蛋白激酶活性,激活多条下游信号转导通路,包括STAT5 [27]、PI3K/AKT/mTOR [28] 和RAS/MAPK通路 [29],这些通路在异常增殖和提高存活率中起关键作用。

尽管酪氨酸激酶抑制剂(TKIs)提高了CML的治疗疗效,延长了患者生存,但TKI耐药性的存在对CML的治愈构成了障碍。TKIs的耐药性可以通过依赖于BCR-ABL和非依赖于BCR-ABL的机制形成,这些机制包括活性氧、受损的通路、肿瘤微环境等造成的DNA修复缺陷。自噬被认为与非依赖于BCR-ABL的耐药有关,但机制目前尚未阐明。国内研究发现 [30],自噬基因Beclin1与CML对于伊马替尼的耐药性有关,Beclin1被沉默后细胞侵袭能力减弱,对药物的敏感性提升,提示自噬参与了伊马替尼治疗CML的耐药过程。同时自噬可启动程序性死亡,抑制肿瘤的发生、发展。有研究显示,自噬可以阻止肿瘤的发生,并在提高药物治疗肿瘤的有效率方面发挥积极作用 [31]。HSPA8在IR-CML细胞或患者中高表达,并且HSPA8的表达上调与CML的进展有关。通过HSPA8基因敲除诱导的自噬在IR-CML细胞中显示出明显的抗肿瘤作用 [32]。HSPA8抑制剂联合BCR-ABL抑制剂也代表了TKI难治性疾病患者有希望的选择。

5. 结论

自噬在不同背景下通过多种机制与细胞死亡途径相互作用,自噬对细胞死亡决定的影响并不总是可预测的。然而,许多基础研究和临床证据表明自噬调节剂可以增强某些抗肿瘤治疗疗效,并降低对治疗的耐药性。进一步了解自噬如何在特定情况下决定细胞死亡,研发靶向药物调节自噬反应,提高患者的临床在治疗疗效,延缓药物耐药性的发生,将是未来研究的重点。

NOTES

*通讯作者。

参考文献

[1] Allegra, A., Innao, V., Allegra, A.G., et al. (2020) Antitumorigenic Action of Nelfinavir: Effects on Multiple Myeloma and Hematologic Malignancies (Review). Oncology Reports, 43, 1729-1736.
https://doi.org/10.3892/or.2020.7562
[2] Marino, G., Niso-Santano, M., Baehrecke, E.H., et al. (2014) Self-Consumption: The Interplay of Autophagy and Apoptosis. Nature Reviews Molecular Cell Biology, 15, 81-94.
https://doi.org/10.1038/nrm3735
[3] Nazio, F., Strappazzon, F., Antonioli, M., et al. (2013) mTOR Inhibits Autophagy by Controlling ULK1 Ubiquitylation, Self-Association and Function through AMBRA1 and TRAF6. Nature Cell Biology, 15, 406-416.
https://doi.org/10.1038/ncb2708
[4] Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364.
https://doi.org/10.1038/s41580-018-0003-4
[5] Gozuacik, D. and Kimchi, A. (2004) Autophagy as a Cell Death and Tumor Suppressor Mechanism. Oncogene, 23, 2891-2906.
https://doi.org/10.1038/sj.onc.1207521
[6] Vanzo, R., Bartkova, J., Merchut-Maya, J.M., et al. (2020) Autophagy Role(s) in Response to Oncogenes and DNA Replication Stress. Cell Death & Differentiation, 27, 1134-1153.
https://doi.org/10.1038/s41418-019-0403-9
[7] Aronson, L.I. and Davies, F.E. (2012) DangER: Protein ovERload. Targeting Protein Degradation to Treat Myeloma. Haematologica, 97, 1119-1130.
https://doi.org/10.3324/haematol.2012.064923
[8] Davenport, E.L., Moore, H.E., Dunlop, A.S., et al. (2007) Heat Shock Protein Inhibition Is Associated with Activation of the Unfolded Protein Response Pathway in Myeloma Plasma Cells. Blood, 110, 2641-2649.
https://doi.org/10.1182/blood-2006-11-053728
[9] Di Lernia, G., Leone, P., Solimando, A.G., et al. (2020) Bortezomib Treatment Modulates Autophagy in Multiple Myeloma. Journal of Clinical Medicine, 9, 552.
https://doi.org/10.3390/jcm9020552
[10] Hideshima, T., Mitsiades, C., Akiyama, M., et al. (2003) Molecular Mechanisms Mediating Antimyeloma Activity of Proteasome Inhibitor PS-341. Blood, 101, 1530-1534.
https://doi.org/10.1182/blood-2002-08-2543
[11] Leblanc, R., Catley, L.P., Hideshima, T., et al. (2002) Proteasome Inhibitor PS-341 Inhibits Human Myeloma Cell Growth in Vivo and Prolongs Survival in a Murine Model. Cancer Research, 62, 4996-5000.
[12] Hamouda, M.A., Belhacene, N., Puissant, A., et al. (2014) The Small Heat Shock Protein B8 (HSPB8) Confers Resistance to Bortezomib by Promoting Autophagic Removal of Misfolded Proteins in Multiple Myeloma Cells. Oncotarget, 5, 6252-6266.
https://doi.org/10.18632/oncotarget.2193
[13] Jaganathan, S., Malek, E., Vallabhapurapu, S., et al. (2014) Bortezomib Induces AMPK-Dependent Autophagosome Formation Uncoupled from Apoptosis in Drug Resistant Cells. Oncotarget, 5, 12358-12370.
https://doi.org/10.18632/oncotarget.2590
[14] Vogl, D.T., Stadtmauer, E.A., Tan, K.S., et al. (2014) Combined Autophagy and Proteasome Inhibition: A Phase 1 Trial of Hydroxychloroquine and Bortezomib in Patients with Relapsed/Refractory Myeloma. Autophagy, 10, 1380-1390.
https://doi.org/10.4161/auto.29264
[15] Zhang, L., Rastgoo, N., Wu, J., et al. (2020) MARCKS Inhibition Cooperates with Autophagy Antagonists to Potentiate the Effect of Standard Therapy against Drug-Resistant Multiple Myeloma. Cancer Letters, 480, 29-38.
https://doi.org/10.1016/j.canlet.2020.03.020
[16] Parker, J.E., Mufti, G.J., Rasool, F., et al. (2000) The Role of Apoptosis, Proliferation, and the Bcl-2-Related Proteins in the Myelodysplastic Syndromes and Acute Myeloid Leukemia Secondary to MDS. Blood, 96, 3932-3938.
https://doi.org/10.1182/blood.V96.12.3932.h8003932_3932_3938
[17] Messa, E., Cilloni, D., Messa, F., et al. (2008) Deferasirox Treatment Improved the Hemoglobin Level and Decreased Transfusion Requirements in Four Patients with the Myelodysplastic Syndrome and Primary Myelofibrosis. Acta Haematologica, 120, 70-74.
https://doi.org/10.1159/000158631
[18] Banerjee, A., Mifsud, N.A., Bird, R., et al. (2015) The Oral Iron Chelator Deferasirox Inhibits NF-kappaB Mediated Gene Expression without Impacting on Proximal Activation: Implications for Myelodysplasia and Aplastic Anaemia. British Journal of Haematology, 168, 576-582.
https://doi.org/10.1111/bjh.13151
[19] Jiang, H., Yang, L., Guo, L., et al. (2018) Impaired Mitophagy of Nucleated Erythroid Cells Leads to Anemia in Patients with Myelodysplastic Syndromes. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 6328051.
https://doi.org/10.1155/2018/6328051
[20] Houwerzijl, E.J., Pol, H.W., Blom, N.R., et al. (2009) Erythroid Precursors from Patients with Low-Risk Myelodysplasia Demonstrate Ultrastructural Features of Enhanced Autophagy of Mitochondria. Leukemia, 23, 886-891.
https://doi.org/10.1038/leu.2008.389
[21] Park, S.M., Ou, J., Chamberlain, L., et al. (2016) U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3’ End Formation. Molecular Cell, 62, 479-490.
https://doi.org/10.1016/j.molcel.2016.04.011
[22] Raj, K., John, A., Ho, A., et al. (2007) CDKN2B Methylation Status and Isolated Chromosome 7 Abnormalities Predict Responses to Treatment with 5-Azacytidine. Leukemia, 21, 1937-1944.
https://doi.org/10.1038/sj.leu.2404796
[23] Romano, A., Giallongo, C., La Cava, P., et al. (2017) Proteomic Analysis Reveals Autophagy as Pro-Survival Pathway Elicited by Long-Term Exposure with 5-Azacitidine in High-Risk Myelodysplasia. Frontiers in Pharmacology, 8, 204.
https://doi.org/10.3389/fphar.2017.00204
[24] Robert, G. and Auberger, P. (2019) Azacitidine Resistance Caused by LAMP2 Deficiency: A Therapeutic Window for the Use of Autophagy Inhibitors in MDS/AML Patients? Autophagy, 15, 927-929.
https://doi.org/10.1080/15548627.2019.1586259
[25] 刘艳芬, 刘欣, 訾建杰, 等. HAG联合地西他滨对骨髓增生异常综合征患者凋亡自噬相关基因表达的影响[J]. 河北医药, 2021, 43(6): 890-893.
[26] Flis, S. and Chojnacki, T. (2019) Chronic Myelogenous Leukemia, a Still Unsolved Problem: Pitfalls and New Therapeutic Possibilities. Drug Design, Development and Therapy, 13, 825-843.
https://doi.org/10.2147/DDDT.S191303
[27] Kollmann, S., Grundschober, E., Maurer, B., et al. (2019) Twins with Different Personalities: STAT5B—But Not STAT5A—Has a Key Role in BCR/ABL-Induced Leukemia. Leukemia, 33, 1583-1597.
https://doi.org/10.1038/s41375-018-0369-5
[28] Dinner, S. and Platanias, L.C. (2016) Targeting the mTOR Pathway in Leukemia. Journal of Cellular Biochemistry, 117, 1745-1752.
https://doi.org/10.1002/jcb.25559
[29] de Cassia, V.C.R., Fontes, A.M., Abraham, K.J., et al. (2018) Expression Differences of Genes in the PI3K/AKT, WNT/b-Catenin, SHH, NOTCH and MAPK Signaling Pathways in CD34+ Hematopoietic Cells Obtained from Chronic Phase Patients with Chronic Myeloid Leukemia and from Healthy Controls. Clinical and Translational Oncology, 20, 542-549.
https://doi.org/10.1007/s12094-017-1751-x
[30] 韩晨阳, 杨毅, 郭丽, 等. 自噬基因Beclin1抑制后增强人髓性白血病耐药细胞K562/IMA对于伊马替尼的药物敏感性[J]. 中国药学杂志, 2019, 54(4): 284-290.
[31] White, E. and Dipaola, R.S. (2009) The Double-Edged Sword of Autophagy Modulation in Cancer. Clinical Cancer Research, 15, 5308-5316.
https://doi.org/10.1158/1078-0432.CCR-07-5023
[32] Liu, Z., Zheng, W., Liu, Y., et al. (2021) Targeting HSPA8 Inhibits Proliferation via Downregulating BCR-ABL and Enhances Chemosensitivity in Imatinib-Resistant Chronic Myeloid Leukemia Cells. Experimental Cell Research, 405, Article ID: 112708.
https://doi.org/10.1016/j.yexcr.2021.112708