VI型胶原纤维蛋白型先天性肌营养不良的治疗进展
The Treatment Progress of Collagen VI Related Congenital Muscular Dystrophy
摘要: VI型胶原纤维蛋白型先天性肌营养不良是一种罕见的肌肉疾病,目前缺乏特异性、针对性的治疗方法,该文从药物治疗、基因治疗、干细胞移植、低蛋白饮食治疗等方面综述了该病治疗方向的研究进展、不足与挑战。
Abstract: Collagen VI related congenital muscular dystrophy is a rare muscular disease, which lacks specific and targeted therapy, this article reviews the progress, deficiency and challenge of drug therapy, gene therapy, stem cell transplantation and low protein diet therapy.
文章引用:曹一凡, 洪思琦. VI型胶原纤维蛋白型先天性肌营养不良的治疗进展[J]. 临床医学进展, 2021, 11(12): 6013-6017. https://doi.org/10.12677/ACM.2021.1112891

1. 前言

VI型胶原蛋白亚基的基因显性或隐性突变引起Ullrich型先天性肌营养不良症(Ullrich congenital muscular dystrophy)、Bethlem肌病和中间表型 [1]。胶原纤维蛋白VI相关的先天性肌营养不良可能是中国人群中第二常见的CMD类型(23.2%),仅次于LAMA2相关的先天性肌营养不良 [2]。患有胶原蛋白VI型先天性肌营养不良的病人不仅表现为肌肉无力,还有关节挛缩和远端过度活动等结缔组织异常。严重的UCMD患者无法独立行走,患有呼吸衰竭,导致早期死亡。在骨骼肌中,VI型胶原是由肌成纤维细胞合成的,而不是由肌细胞合成的 [3] [4],胶原纤维VI缺乏改变了细胞外间质结构和生物力学特性,导致细胞凋亡和氧化应激增加,自噬减少,肌肉再生受损。目前CMD缺乏特异性、针对性的治疗方法,且其他肌营养不良症的基因突变通常涉及肌细胞产生的细胞蛋白,因此开发专门针对肌肉细胞外基质改变的肌肉营养不良症的治疗方案迫在眉睫。本文对COL6 CMD的治疗进展进行了综述。

2. 药物治疗

2.1. Vitamin C

Vitamin C (抗坏血酸、AA)在转录和翻译水平上对胶原的产生有不同的影响 [5]。用AA处理后,UCMD患者皮肤成纤维细胞和对照组皮肤成纤维细胞的基因表达都发生了变化。患者皮肤成纤维细胞在AA处理后,有40个基因恢复信号。AA能够将这些基因的表达改变到与未经处理的对照细胞相当的水平。表明AA可以修饰一些基因的表达,使其向基础表型(未经处理的对照组细胞)转化。这表明维生素C可能对UCMD病理学的某些方面具有有益的作用,但这需要在体内进行进一步的研究和证明。

2.2. 环孢素A

Col6a1基因敲除小鼠肌肉的超微结构进行分析,发现了含有异常嵴和类晶体包涵体的肿胀线粒体以及扩张的肌质网 [6]。当Col6a1基因敲除肌纤维具有潜在的线粒体功能障碍时,PTP (线粒体通透性转换孔)成为细胞死亡的重要因素。环孢素A通过与线粒体亲环素d相互作用,阻断其调节PTP的能力而起作用。除此之外,环孢素A还激活了敲除小鼠肌纤维中的自噬 [7],促进肌肉生成和再生 [8]。

环孢素A治疗一个月的患者肌肉活检显示,所有患者的细胞凋亡都减少了,年轻患者中有更多的再生肌肉纤维,线粒体膜电位基本正常化 [9]。环孢素A治疗一年的患者,肌肉力量平均增加了28%,运动功能保持不变,呼吸功能稳步下降。与一个月的结果一致,线粒体膜电位在一年内恢复正常,凋亡减少,再生受到刺激 [10]。

环孢素a与细胞质亲环素a结合,抑制钙调磷酸酶,导致免疫抑制。所以,在不抑制钙调磷酸酶的情况下复制环孢素a的抗亲环素d活性的药物是更有吸引力的治疗选择。Debio 025和NIM811在Col6a1基因敲除小鼠中具有治疗效果 [11] [12]。NIM811在斑马鱼模型中比环孢素a更有效 [12]。

2.3. 奥米加皮

评估抗凋亡药物奥米加皮对LAMA2和VI型胶原先天性肌营养不良患者的治疗作用的临床试验已进行(参见https://clinicaltrials.gov)。奥米加皮被发现是安全且耐受性良好的,但由于研究时间短,在疾病相关的临床评估中未见一致的变化。

3. 基因治疗

3.1. siRNA抑制框内跳跃

外显子跳跃突变也是常见的胶原蛋白VI型先天性肌营养不良的病因。COL6A3基因第16外显子的框内跳跃是是导致UCMD最常见的显性负性突变 [13] [14]。由此产生的突变体α3 (VI)链在三螺旋结构域的氨基端附近缺失了18个氨基酸。将小干扰RNA (siRNA)引入哺乳动物细胞会触发RNAi,RNAi是一种旨在调节基因表达的内源性细胞内途径,在其中RNA诱导的沉默复合体发挥着重要作用 [15] [16]。利用siRNA,我们在UCMD来源的成纤维细胞中选择性地抑制COL6A3中的外显子16框内跳跃。这种选择性敲低减少了VI型胶原纤维在细胞内滞留,增加了细胞外间质VI型胶原纤维的丰富度和质量 [17] [18] [19]。

3.2. 利用siRNA敲除SMG-8

COL6A1COL6A2COL6A3的纯合子和复合杂合子PTC (过早终止密码子)突变导致三螺旋结构的缺失和ECM功能的缺陷,导致营养不良肌肉改变 [20] [21] [22] [23] [24]。大多数含有ptc的mRNAs很少产生截短的蛋白质,因为这些mRNAs被一种称为NMD (无义介导的mRNA衰减)机制降解。SMG-1和UPF1是NMD的重要组成部分,SMG-8是SMG-1激酶的一个亚单位,利用siRNA敲除SMG-8,使NMD选择性抑制,从而导致三螺旋胶原VI的装配和突变表型部分拯救,从而改善UCMD成纤维细胞的突变表型 [25] [26] [27]。所以,SMG-8是有效抑制NMD以改善NMD加剧的突变表型而又不影响必需的生理细胞功能的有希望的靶标。

4. 多能间充质干细胞移植

VI型胶原是肌卫星细胞生态位的关键成分,缺乏VI型胶原会导致Col6a1基因敲除小鼠肌肉再生能力受损、卫星细胞自我更新能力降低 [28]。在活体内移植野生型间质细胞,补充正常的VI型胶原,可改善VI型胶原缺陷肌肉的生化特性,挽救肌卫星细胞缺损 [28]。多能间充质干细胞(MSC)是最常见的成体干细胞类型,可从多种来源分离,如骨髓和脂肪组织。移植具有间充质干细胞表型和功能特征的人脂肪干细胞,可以在Col6a1基因敲除小鼠体内分泌VI型胶原蛋白 [29]。因此,基于MSC的治疗可能是一个有吸引力的选择,因为移植的细胞能够自我更新并分化为骨骼肌中产生VI型胶原的细胞 [3] [4]。

5. 低蛋白饮食治疗

基因敲除小鼠中异常线粒体的存在表明自噬是有缺陷的。长时间的饥饿能够激活自噬并拯救异常的线粒体和肌质网。长期的低蛋白饮食可诱导敲除肌肉的自噬,减少细胞凋亡并改善肌肉力量 [7]。

一项为期一年的低蛋白饮食试点试验显示所有患者的自噬功能均被激活,运动功能和呼吸功能均有改善,所有肌力参数均无明显下降 [30]。这个实验证实,自噬可以在VI型胶原型先天性肌营养不良患者中被激活,这一原理可能成为未来临床试验的有价值的治疗靶点。

6. 总结

VI型胶原纤维蛋白型先天性肌营养不良临床上以多学科综合监测为主要管理方案,目前暂无明确的治疗方法,但针对该病的治疗在进行研究中。利用siRNA抑制UCMD患者成纤维细胞的框内跳跃或敲除SMG-8,可以改善UCMD患者成纤维细胞的表型,维生素C处理后的UCMD患者成纤维细胞的基因表达向基础表型转化,这些体外实验为VI型胶原纤维蛋白型先天性肌营养不良的治疗提供了方向,但这些治疗需进一步在体内进行验证。在Col6a1基因敲除小鼠体内移植人脂肪干细胞,可分泌VI型胶原蛋白,所以MSC是该病疗法的另一个方向。环孢素A治疗改善了患者的病情,表明了这种治疗方式的有效性,但环孢素A具有免疫抑制的副作用,无副作用的药物的研究仍在进行中。低蛋白饮食激活了患者的自噬功能,但临床实验人数较少,需更大规模的临床研究。此外VI型胶原纤维蛋白型先天性肌营养不良的低患病率及肌肉活检评估疗效是临床实验的很大限制,这提示我们需进一步研究监测患者病情变化的指标。期待更多关于VI型胶原纤维蛋白型先天性肌营养不良治疗的研究,给患者带来福音。

NOTES

*通讯作者。

参考文献

[1] Bönnemann, C.G. (2011) The Collagen VI-Related Myopathies: Muscle Meets Its Matrix. Nature Reviews Neurology, 7, 379-390.
https://doi.org/10.1038/nrneurol.2011.81
[2] Ge, L., et al. (2019) Congenital Muscular Dystrophies in China. Clinical Genetics, 96, 207-215.
[3] Braghetta, P., Ferrari, A., Fabbro, C., et al. (2008) An Enhancer Required for Transcription of the Col6a1 Gene in Muscle Connective Tissue Is Induced by Signals Released from Muscle Cells. Experimental Cell Research, 314, 3508-3518.
https://doi.org/10.1016/j.yexcr.2008.08.006
[4] Zou, Y., Zhang, R.Z., Patrizia, S., et al. (2008) Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem. Journal of Neuropathology & Experimental Neurology, 67, 144.
https://doi.org/10.1097/nen.0b013e3181634ef7
[5] Park, H.J., Sun, M.O., Kim, H.J., et al. (2010) Vitamin C Attenuates ERK Signalling to Inhibit the Regulation of Collagen Production by LL-37 in Human Dermal Fibroblasts. Experimental Dermatology, 19, e258-e264.
https://doi.org/10.1111/j.1600-0625.2010.01070.x
[6] Irwin, W.A., Bergamin, N., Sabatelli, P., et al. (2003) Mitochondrial Dysfunction and Apoptosis in Myopathic Mice with Collagen VI Deficiency. Nature Genetics, 35, 367-371.
https://doi.org/10.1038/ng1270
[7] Grumati, P., Coletto, L., Sabatelli, P., et al. (2011) Autophagy Is Defective in Collagen VI Muscular Dystrophies, and Its Reactivation Rescues Myofiber Degeneration. Nature Medicine, 16, 1313-1320.
https://doi.org/10.1038/nm.2247
[8] Francesca, G., Sibilla, M., Valeria, M., et al. (2014) Cyclosporin A Promotes in Vivo Myogenic Response in Collagen VI-Deficient Myopathic Mice. Frontiers in Aging Neuroscience, 6, 244.
https://doi.org/10.3389/fnagi.2014.00244
[9] Merlini, L., Angelin, A., Tiepolo, T., et al. (2008) Cyclosporin A Corrects Mitochondrial Dysfunction and Muscle Apoptosis in Patients with Collagen VI Myopathies. Proceedings of the National Academy of Sciences of the United States of America, 105, 5225-5229.
https://doi.org/10.1073/pnas.0800962105
[10] Merlini, L., Sabatelli, P., Armaroli, A., et al. (2011) Cyclosporine A in Ullrich Congenital Muscular Dystrophy: Long-Term Results. Oxidative Medicine and Cellular Longevity, 2011, Article ID: 139194.
https://doi.org/10.1155/2011/139194
[11] Angelin, A., Tiepolo, T., Palma, E., et al. (2009) The Cyclophilin Inhibitor Debio 025 Normalizes Mitochondrial Function, Muscle Apoptosis and Ultrastructural Defects in Col6a1/Myopathic Mice. Neuromuscular Disorders, 19, 630.
https://doi.org/10.1016/j.nmd.2009.06.271
[12] Zulian, A., Rizzo, E., Schiavone, M., et al. (2014) NIM811, a Cyclophilin Inhibitor without Immunosuppressive Activity, Is Beneficial in Collagen VI Congenital Muscular Dystrophy Models. Human Molecular Genetics, 23, 5353-5363.
https://doi.org/10.1093/hmg/ddu254
[13] Higuchi, I., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265.
https://doi.org/10.1002/ana.1120
[14] Demir, E., Sabatelli, P., Allamand, V., et al. (2002) Mutations in COL6A3 Cause Severe and Mild Phenotypes of Ullrich Congenital Muscular Dystrophy. The American Journal of Human Genetics, 70, 1446-1458.
https://doi.org/10.1086/340608
[15] Elbashir, S.M., Harborth, J., Lendeckel, W., et al. (2001) Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature, 411, 494-498.
[16] Burnett, J. and Rossi, J. (2012) RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry & Biology, 19, 60-71.
https://doi.org/10.1016/j.chembiol.2011.12.008
[17] Gualandi, F., Manzati, E., Sabatelli, P., et al. (2012) Antisense-Induced Messenger Depletion Corrects a COL6A2 Dominant Mutation in Ullrich Myopathy. Human Gene Therapy, 23, 1313-1318.
https://doi.org/10.1089/hum.2012.109
[18] Bolduc, V., Zou, Y., Ko, D., et al. (2014) siRNA-Mediated Allele-Specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. Molecular Therapy. Nucleic Acids, 3, e147.
https://doi.org/10.1038/mtna.2013.74
[19] Noguchi, S., Ogawa, M., Kawahara, G., et al. (2014) Allele-Specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts. Molecular Therapy Nucleic Acids, 3, e171.
https://doi.org/10.1038/mtna.2014.22
[20] Camacho-Vanegas, O., Bertini, E., Zhang, R.Z., et al. (2001) Ullrich Scleroatonic Muscular Dystrophy Is Caused by Recessive Mutations in Collagen Type VI. Proceedings of the National Academy of Sciences, 98, 7516-7521.
https://doi.org/10.1073/pnas.121027598
[21] Higuchi, I., Shiraishi, T., Hashiguchi, T., et al. (2001) Frameshift Mutation in the Collagen VI Gene Causes Ullrich’s Disease. Annals of Neurology, 50, 261-265.
https://doi.org/10.1002/ana.1120
[22] Peat, R.A., Baker, N.L., Jones, K.J., North, K.N. and Lamande, S.R. (2007) Variable Penetrance of COL6A1 Null Mutations: Implications for Prenatal Diagnosis and Genetic Counselling in Ullrich Congenital Muscular Dystrophy Families. Neuromuscular Disorders, 17, 547-557.
[23] Giusti, B., Lucarini, L., Pietroni, V., et al. (2010) Dominant and Recessive COL6A1 Mutations in Ullrich Scleroatonic Muscular Dystrophy. Annals of Neurology, 58, 400-410.
https://doi.org/10.1002/ana.20586
[24] Lamandé, S.R. and Bateman, J.F. (2017) Collagen VI Disorders: Insights on Form and Function in the Extracellular Matrix and Beyond. Matrix Biology, 71-72, 348-367.
[25] Usuki, F., Yamashita, A., Higuchi, I., et al. (2010) Inhibition of Nonsense-Mediated mRNA Decay Rescues the Phenotype in Ullrich’s Disease. Annals of Neurology, 55, 740-744.
https://doi.org/10.1002/ana.20107
[26] Usuki, F., Yamashita, A., Kashima, I., et al. (2006) Specific Inhibition of Nonsense-Mediated mRNA Decay Components, SMG-1 or Upf1, Rescues the Phenotype of Ullrich Disease Fibroblasts. Molecular Therapy, 14, 351-360.
https://doi.org/10.1016/j.ymthe.2006.04.011
[27] Usuki, F., Yamashita, A., Shiraishi, T., et al. (2013) Inhibition of SMG-8, a Subunit of SMG-1 Kinase, Ameliorates Nonsense-Mediated mRNA Decay-Exacerbated Mutant Phenotypes without Cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 110, 15037-15042.
https://doi.org/10.1073/pnas.1300654110
[28] Urciuolo, A., et al. (2013) Collagen VI Regulates Satellite Cell Self-Renewal and Muscle Regeneration. Nature Communications, 4, Article No. 1964.
[29] Alexeev, V., Arita, M., Donahue, A., et al. (2014) Human Adipose-Derived Stem Cell Transplantation as a Potential Therapy for Collagen VI-Related Congenital Muscular Dystrophy. Stem Cell Research & Therapy, 5, 21.
https://doi.org/10.1186/scrt411
[30] Castagnaro, S., Pellegrini, C., Pellegrini, M., et al. (2016) Autophagy Activation in COL6 Myopathic Patients by a Low-Protein-Diet Pilot Trial. Autophagy, 12, 2484-2495.
https://doi.org/10.1080/15548627.2016.1231279