一类具有不连续控制策略的网络病毒模型的动力学分析
Dynamics of a Network Virus Model with Discontinuous Control Strategies
DOI: 10.12677/AAM.2022.117441, PDF, HTML, 下载: 337  浏览: 428 
作者: 徐忠齐:长沙理工大学,数学与统计学院,湖南 长沙
关键词: 分段连续网络病毒Poincaré映射全局动力学Piecewise Continuous Network Virus Poincaré Map Global Dynamics
摘要: 本文研究了一类具有安装杀毒软件和重装系统策略的分段连续网络病毒模型,从控制成本考虑, 我们将根据网络用户的数量作为考虑是否启动控制策略的决定因素。 利用 Bendixson-Dulac 准则,格林公式,Ω 极限集和 Poincar´e 映射等知识分析了模型的全局动力学,并进行了数值模拟。
Abstract: This paper studies a kind of piecewise continuous network virus model with anti-virus software installation and system reinstallation strategy. Considering the control cost, we will consider whether to start the control strategies according to the number of network users. The global dynamics of the model are analyzed by using Bendixson- Dulac criterion, Green’s formula, Ω limit set and Poincar´e map and so on. In the end, numerical simulations are carried out.
文章引用:徐忠齐. 一类具有不连续控制策略的网络病毒模型的动力学分析[J]. 应用数学进展, 2022, 11(7): 4142-4262. https://doi.org/10.12677/AAM.2022.117441

参考文献

[1] 贾晶. 信息系统的安全与保密[M]. 北京: 清华大学出版社, 1999.
[2] Howard, J.D. (1998) An Analysis of Security Incidents on the Internet 1989-1995. Carnegie Mellon University, Pittsburgh, PA.
[3] 何卫平. “爱虫”病毒分析及杀毒[J]. 电脑编程技巧与维护, 2000(8): 92-94.
[4] Cohen, F. (1984) Computer Viruses: Theory and Experiments. Computers and Security, 6, 22-35.
https://doi.org/10.1016/0167-4048(87)90122-2
[5] Kephart, J.O., White, S.R. and Chess, D.M. (1993) Computers and Epidemiology. Spectrum IEEE, 30, 20-26.
https://doi.org/10.1109/6.275061
[6] Pastor-Satorras, R. and Vespignani, A. (2001) Epidemic Dynamics and Endemic States in Complex Networks. Physical Review E, 63, Article ID: 066117.
https://doi.org/10.1103/PhysRevE.63.066117
[7] Kim, J., Radhakrishnan, S. and Dhall, S.K. (2004) Measurement and Analysis of Worm Propa- gation on Internet Network Topology. International Conference on Computer Communications and Networks, Chicago, IL, 11-13 October 2004, 495-500.
[8] Ren, J., Yang, X., Zhu, Q., Yang, L. and Zhang, C. (2012) A Novel Computer Virus Model and Its Dynamics. Nonlinear Analysis: Real World Applications, 13, 376-384.
https://doi.org/10.1016/j.nonrwa.2011.07.048
[9] Gan, C., Yang, C., Liu, W., Zhu, Q. and Zhang, X. (2012) Propagation of Computer Virus under Human Intervention: A Dynamical Model. Discrete Dynamics in Nature and Society, 2012, Article ID: 106950.
https://doi.org/10.1155/2012/106950
[10] Mishra, B.K. and Pandey, S.K. (2011) Dynamic Model of Worms with Vertical Transmission in Computer Network. Applied Mathematics and Computation, 217, 8438-8446.
https://doi.org/10.1016/j.amc.2011.03.041
[11] Ren, J., Yang, X., Yang, L., Xu, Y. and Yang, F. (2012) A Delayed Computer Virus Propa- gation Model and Its Dynamics. International Journal of Computer Mathematics, 45, 74-79.
https://doi.org/10.1016/j.chaos.2011.10.003
[12] 任建国. 计算机病毒的网络传播机制: 三个新型的动力系统模型[D]: [博士学位论文]. 重庆: 重庆大学, 2012.
[13] Marsden, J.E. and Sirovich, L. (1998) Elements of Applied Bifurcation Theory. Springer, Berlin.
[14] Mishra, B.K. and Jha, N. (2010) SEIQRS Model for the Transmission of Malicious Objects in Computer Network. Applied Mathematical Modelling, 34, 710-715.
https://doi.org/10.1016/j.apm.2009.06.011
[15] Nyamoradi, N. and Javidi, M. (2012) Qualitative and Bifurcation Analysis Using a Computer Virus Model with a Saturated Recovery Function. Journal of Applied Analysis and Computa- tion, 2, 305-313.
https://doi.org/10.11948/2012022
[16] 冯丽萍, 王鸿斌, 冯素琴. 改进的SIR计算机病毒传播模型[J]. 计算机应用, 2011, 31(7): 1891- 1893.
[17] 叶晓梦, 杨小帆. 基于两阶段免疫接种的SIRS计算机病毒传播模型[J]. 计算机应用, 2013, 33(3): 739-742.
[18] Guo, Z., Huang, L. and Zou, X. (2013) Impact of Discontinuous Treatments on Disease Dy- namics in an SIR Epidemic Model. Mathematical Biosciences and Engineering, 9, 97-110.
https://doi.org/10.3934/mbe.2012.9.97
[19] 陈小艳. 几类Filippov系统与光滑微分系统的定性理论及应用研究[D]: [博士学位论文]. 长沙: 湖南大学, 2015.
[20] Filippov, A.F. (1988) Differential Equations with Discontinuous Right-Hand Side. Kluwer A- cademic Publishers, The Netherlands.
[21] 马慧丽, 黄立宏, 王佳伏. 有干预措施的Filippov戒烟模型的全局动力学[J]. 经济数学, 2020, 37(3): 208-213.
[22] Li, W., Huang, L. and Wang, J. (2020) Dynamic Analysis of Discontinuous Plant Disease Models with A Non-Smooth Separation Line. Nonlinear Dynamics, 99, 1675-1697.
https://doi.org/10.1007/s11071-019-05384-w
[23] Li, W., Chen, Y., Huang, L., et al. (2022) Global Dynamics of a Filippov Predator-Prey Model with Two Thresholds for Integrated Pest Management. Chaos, Solitons and Fractals, 157, Article ID: 111881.
https://doi.org/10.1016/j.chaos.2022.111881