Biostat@B发酵罐生产低色素短梗霉多糖的研究
Studies on the Pullulans Polysaccride Produced by Biostat@B Fermentor
摘要: 所用菌株是从长期保存的出芽短梗霉菌种经复壮、筛选后得到的一株多糖产量相对高、色素水平相对低的菌株,通过摇瓶发酵确定最佳培养条件,并解决了短梗霉发酵的一些问题,例如:菌丝结团,pH下降过快影响多糖的产量等,使其多糖转化率提高了10%~20%,色素含量明显减少,后通过Biostat@B5L发酵罐发酵培养,确定了最适发酵条件,通气量为1.5 vvm,转速为500 rpm,发酵液颜色在乳白到淡黄之间,无需脱色处理,即可得到白色粗糖产品,多糖产量达到35 g/L,转化率达到65%左右,较好的平衡了多糖量和色素量的关系。
Abstract: Pullulans polysaccride, produced from Aureobasidium pullulans, is a kind of extracellular polysaccride. In the current study, in order to change the permeability of cell membrane and solve the problem of linked group of fungi mycelium, the method adding tween-80 and different Ca2+ resources was established. The utilized strain with relatively high polysaccride yield and low pigment level was obtained after the rejuvenation and riddling of long-preserved Aureobasidium pullulans strain. The transformation ratio of polysaccride was increased by 10% - 20% and the pigment content was greatly reduced. By adopting Biostat@B5L fermentor according to the optimum formula, and find the opti-mum aerate speed is 1.5 vvm, and the rate of circle is 500 rpm and culture temperature is 28˚C ± 1.5˚C, and initial pH is 6.5, so a high conversion rate of 65% (35 g/L polysaccride yield)was obtained from the light colour medium. The fer-menting liquor is between milk white and light yellow, and the white primary product can be gained without decolora-tion step.
文章引用:马金龙, 姜国斌, 姚善泾, 金华, 王长海. Biostat@B发酵罐生产低色素短梗霉多糖的研究[J]. 生物过程, 2012, 2(1): 40-44. http://dx.doi.org/10.12677/bp.2012.21007

参考文献

[1] B. S. Campbell, A.-B. M. Siddique, B. M. McDougal, et al. Which morphological forms of the fungus Aureobasidium pullulans responsible for pullulan production? FEMS Microbiology Letters, 2004, 232(2): 225-228.
[2] 张剑波, 时春娟, 付杰. 茁霉多糖生物合成的研究进展[J]. 天然产物研究与开发, 2006, 18(6): 1041-1047.
[3] 付湘晋, 童群义, 于航. 低色素出芽短梗霉菌株的诱变筛选[J]. 工业微生物, 2006, 36(3): 24-31.
[4] 张盛贵, 张雯, 韩丽. 产茁霉多糖菌株的筛选和初步发酵[J].食品科技, 2008, 8: 1-5.
[5] 朱一晖, 张丽敏, 詹晓北. 出芽短梗霉产色素能力弱化菌株的筛选[J]. 无锡轻工大学学报, 2003, 22(1): 16-20.
[6] D. Hamendra, K. Kachhawa, P. Bhattacharjee, et al. Studies on downstream processing of pulluan. Carbohydrate Polymers, 2003, 52: 25-28.
[7] 王长海, 宋振响, 王新力等. 短梗霉多糖30立升发酵罐发酵研究[J]. 烟台大学学报(自然科学与工程版), 1993, 2: 35-38.
[8] B. S. Campbell, M. B. McDougal and R. J. Seviour. Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzyme and Microbial Technology, 2003, 33(1): 104-112.
[9] P. A. Gibbs, R. J. Seviour. Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch? Applied Biochemistry and Biotechnology, 1996, 46: 503-510.
[10] M. Reeslev, B. B. Jorgensen, et al. Exopolysaccaride production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammo-nium-glucose ratio in the growth medium. Journal of Biotechnology, 1996, 51(2): 131- 135.
[11] A. Lazaridou. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred rank reactor under varying agitation. Enzyme on Microbial Technology, 2002, 31: 122-132.